G. Biausque, Y. Schuurman / Journal of Catalysis 276 (2010) 306–313
313
[11] Y. Wu, T. Yu, B.S. Dou, C.X. Wang, X.F. Xie, Z.L. Yu, S.R. Fan, L.C. Wang, J. Catal.
120 (1989) 88.
[12] J. Pérez-Ramírez, E.V. Kondratenko, J. Catal. 250 (2007) 240.
[13] H.G. Lintz, K. Wittstock, Catal. Today 29 (1996) 457.
[14] R.J.H. Voorhoeve, D.W. Johnson Jr, J.P. Remeika, P.K. Gallagher, Science 195
(1977) 827.
[15] M. Skoglundh, L. Löwendahl, K. Jansson, L. Dahl, M. Nygren, Appl. Catal. B 3
(1994) 259.
[16] P.R. Watson, G.A. Somorjai, J. Catal. 74 (1982) 282.
[17] J.O. Petunchi, J.L. Nicastro, E.A. Lombardo, J. Chem. Soc. Chem. Commun. (1980)
467.
are primary products that react to nitrogen in a consecutive step.
Increasing the oxygen partial pressure or reducing the ammonia
partial pressure has the same effect on the oxidation state of the
surface and should have the same effect on the NOx and N2O selec-
tivity, which is indeed the case. Under all conditions, oxygen is in
excess and increasing the oxygen partial pressure will result in
more reactive oxygen surface species that favor nitrogen formation
rather than NOx.
[18] Y. Schuurman, Catal. Today 121 (2007) 187.
[19] J.T. Gleaves, G.S. Yablonskii, P. Phanawadee, Y. Schuurman, Appl. Catal. A 160
(1997) 55.
5. Conclusions
[20] J.T. Gleaves, J.R. Ebner, T.C. Kuechler, Catal. Rev. Sci. Eng. 30 (1988) 49.
[21] J. Pérez-Ramírez, E.V. Kondratenko, Catal. Today 121 (2007) 160–169.
[22] J. Pérez-Ramírez, E.V. Kondratenko, V.A. Kondratenko, M. Baerns, J. Catal. 227
(2004) 90.
[23] J. Pérez-Ramírez, E.V. Kondratenko, V.A. Kondratenko, M. Baerns, J. Catal. 229
(2005) 303.
[24] J. Pérez-Ramírez, E.V. Kondratenko, G. Novell-Leruth, J.M. Ricart, J. Catal. 261
(2009) 217.
[25] M. Fathi, F. Monnet, Y. Schuurman, A. Holmen, C. Mirodatos, J. Catal. 190
(2000) 439.
[26] V.A. Kondratenko, Appl. Catal. A 381 (2010) 74.
[27] S. Delagrange, Y. Schuurman, Catal. Today 121 (2007) 204.
[28] L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louër, P. Scardi, J. Appl. Cryst. 32
(1999) 36.
[29] A. Beretta, P. Baiardi, D. Prina, P. Forzatti, Chem. Eng. Sci. 54 (1999) 765.
[30] G. Germani, A. Stefanescu, A.C. van Veen, Y. Schuurman, Chem. Eng. Sci. 62
(2007) 5084.
[31] S. Royer, H. Alamdari, D. Duprez, S. Kaliaguine, Appl. Catal. B 58 (2005) 273.
[32] A. Scheibe, M. Hinz, R. Imbihl, Surf. Sci. 576 (2005) 131.
[33] A. Scheibe, U. Lins, R. Imbihl, Surf. Sci. 577 (2005) 1.
[34] R. Imbihl, A. Scheibe, Y.F. Zeng, S. Gunther, R. Kraehnert, V.A. Kondratenko, M.
Baerns, W.K. Offermans, A.P.J. Jansen, R.A. van Santen, PCCP 9 (2007) 3522.
[35] T. Pignet, L. Schmidt, Chem. Eng. Sci. 29 (1974) 1123.
[36] C.J. Weststrate, J.W. Bakker, E.D.L. Rienks, C.P. Vinoda, A.V. Matveevc, V.V.
Gorodetskii, B.E. Nieuwenhuys, J. Catal. 242 (2006) 184.
[37] Il’Chenko, Golodets, J. Catal. 39 (1975) 57.
LaCoO3 gives good selectivity to NO in the high temperature
oxidation of ammonia. Nitrogen and nitrous oxide are side prod-
ucts. The low selectivity toward N2O makes this catalyst a potential
replacement of the PMG gauzes in industrial processes.
The reaction proceeds by a Mars and Van Krevelen mechanism.
TAP experiments show that the dominant oxygen exchange mech-
anism takes place by the complex heteroexchange R2.
NO and N2O are formed through parallel routes from ammonia
via surface nitroxyl (HNO) species. Formation of nitrogen occurs
through at least three routes. Decomposition of the reaction prod-
ucts NO and N2O gives N2, the latter being the most reactive. The
third route consists of the reaction of adsorbed ammonia with
short-lived oxygen surface species, such as peroxide or superoxide
species.
NO adsorbs into an oxygen vacancy and can form a nitrite ONO-
intermediate species through which it can exchange its oxygen
atom with the perovskite surface.
The proposed reaction mechanism, mainly based on TAP exper-
iments, is in good agreement with the observed steady-state
trends.
[38] W.K. Offermans, A.P.J. Jansen, R.A. van Santen, Surf. Sci. 600 (2006) 1714.
[39] G. Novell-Leruth, A. Valcarcel, A. Clotet, J.M. Ricart, J. Pérez-Ramírez, J. Phys.
Chem. B 109 (2005) 18061.
[40] G. Novell-Leruth, J.M. Ricart, J. Pérez-Ramírez, J. Phys. Chem. C 112 (2008)
13554.
Acknowledgment
[41] R. Kraehnert, M. Baerns, Chem. Eng. J. 137 (2008) 361.
[42] S. Khan, R.J. Oldman, F. Cora, C.R. Catlow, S.A. French, S.A. Axon, Phys. Chem.
Chem. Phys. 8 (2006) 5207.
This work was supported by TopCombi (NMP2-CT2005-
515792) funded by the European Union.
[43] E.G. Vrieland, J. Catal. 32 (1974) 415.
[44] J.M.G. Amoresa, V.S. Escribanoa, G. Ramisb, G. Busca, Appl. Catal. B: Environ. 13
(1997) 45.
References
[45] D.W.L. Griffiths, H.E. Hallam, W.J. Thomas, J. Catal. 17 (1970) 18.
}
[46] T.C. Bruggemann, F.J. Keil, J. Phys. Chem. C 113 (2009) 13860.
[1] C.N. Satterfield, Heterogeneous Catalysis in Industrial Practice, second ed.,
Krieger Florida, 1996.
[2] J. Pérez-Ramírez, F. Kapteijn, K. Schöffel, J.A. Moulijn, Appl. Catal. B 44 (2003)
117.
[3] V.A. Sadykov, L.A. Isupova, I.A. Zolotarskii, L.N. Bobrova, A.S. Noskov, V.N.
Parmon, E.A. Brushtein, T.V. Telyatnikova, V.I. Chernyshev, V.V. Lunin, Appl.
Catal. A 204 (2000) 59.
[47] R. Merkle, J. Maier, Angew. Chem. Int. Ed. 47 (2008) 3874.
[48] E.M. Sadovskaya, Y.A. Ivanova, L.G. Pinaeva, G. Grasso, T.G. Kuznetsova, A. van
Veen, V.A. Sadykov, C. Mirodatos, J. Phys. Chem. A 111 (2007) 4498.
[49] S. Royer, D. Duprez, S. Kaliaguine, J. Catal. 234 (2005) 364.
[50] Y. Teraoka, T. Harada, S. Kagawa, J. Chem. Soc. Faraday Trans. 94 (1998) 1887.
[51] S.B. Adler, X.Y. Chen, J.R. Wilson, J. Catal. 245 (2007) 91.
[52] P.J. Gellings, H.J.M. Bouwmeester, Catal. Today 58 (2000) 1.
[53] Y. Teraoka, M. Yoshimatsu, N. Yamazoe, T. Seiyama, Chem. Lett. (1984) 893.
[54] J.M. Herrmann, Catal. Today 112 (2006) 73.
[55] R. Burch, S.T. Daniells, P. Hu, J. Chem. Phys. 121 (2004) 2737.
[56] P. Denton, A. Giroir-Fendler, Y. Schuurman, H. Praliaud, C. Mirodatos, M.
Primet, Appl. Catal. A: Gen. 220 (2001) 141.
[57] M.N. Hughes, Quart. Rev. Chem. Soc. 22 (1968) 1.
[58] S.G. Cheskis, V.A. Nadtochenko, O.M. Sarkisov, Int. J. Chem. Kinet. 13 (1981)
1041.
[4] J. Petryk, E. Kolakowska, Appl. Catal. B 24 (2000) 121.
[5] J. Petryk, K. Schmidt-Szalowski, K. Krawczyk, Appl. Catal. A 175 (1998) 147.
[6] A.S. Noskov, I.A. Zolotarskii, S.A. Pokrovskaya, V.N. Kashkin, E.M. Slavinskaya,
V.V. Mokrinskii, V.N. Korotkikh, Chem. Eng. J. 91 (2003) 235.
[7] L.A. Isupova, E.F. Sutormina, N.A. Kulikovskaya, L.M. Plyasova, N.A. Rudina, I.A.
Ovsyannikova, I.A. Zolotarskii, V.A. Sadykov, Catal. Today 105 (2005) 429.
[8] M.M. Karavayev, A.P. Zasorin, N.F. Kleshchev, Khimia Moscow, 1983.
[9] B. Bernauer, A. Simecek, J. Vosolsobe, Czech. Chem. Commun. 47 (1980) 2097.
[10] B. Bernauer, A. Simecek, J. Vosolsobe, Czech. Chem. Commun. 47 (1980) 2087.