2438
M. N. S. RAD ET AL.
arylvinyl nitriles assisted by microwave in ionic liquid. Synlett 2006, 2094–2098; (c)
Harusawa, S.; Yoneda, R.; Omori, Y.; Kurihara, T. Non-aqueous cyanation of halides
using lithium cyanide. Tetrahedron Lett. 1987, 28, 4189–4190.
4. (a) Movassagh, B.; Shokri, S. An efficient and convenient KF=Al2O3-mediated synthesis
of nitriles from aldehydes. Tetrahedron Lett. 2005, 46, 6923–6925; (b) Das, B.; Ramesh,
C.; Madhusudhan, P. An improved one-pot conversion of aldehydes into nitriles under
microwave irradiation using ammonium acetate. Synlett 2000, 1599–1600; (c) Srinivas,
K. V. N. S.; Bolla Reddy, E.; Das, B. Highly convenient and efficient one-pot conversions
of aldehydes into nitriles and ketones into amides using HY-zeolite. Synlett 2002, 625–
627; (d) Khezri, S. H.; Azimi, N.; Mohammed-Vali, M.; Eftekhari-Sis, B.; Hashemi, M.
M.; Baniasadi, M. H.; Teimouri, F. Red mud–catalyzed one-pot synthesis of nitriles from
aldehydes and hydroxylamine hydrochloride under microwave irradiation. Arkivoc 2007,
15, 162–170; (e) Blatter, H. M.; Lukaszewski, H.; De Stevens, G. A new general synthesis
of aromatic nitriles from aldehydes. J. Am. Chem. Soc. 1961, 83, 2203; (f) Talukdar, S.;
Hsu, J. L.; Chou, T. C.; Fang, J. M. Direct transformation of aldehydes to nitriles using
iodine in ammonia water. Tetrahedron Lett. 2001, 42, 1103–1105; (g) Lai, G.; Bhamare, N.
K.; Anderson, W. K. A one-pot method for the efficient preparation of aromatic nitriles
from aldehydes using ammonia, magnesium sulfate, and manganese dioxide. Synlett 2001,
230–231; (h) Das, B.; Madhusudhan, P.; Venkataiah, B. An efficient microwave-assisted
one-pot conversion of aldehydes into nitriles using silica gel–supported NaHSO4 catalyst.
Synlett 1999, 1569–1570; (i) Miller, M. J.; Loudon, G. M. A convenient, high-yield
conversion of aldehydes to nitriles. J. Org. Chem. 1975, 40, 126–127.
5. (a) McAllister, G. D.; Wilfred, C. D.; Taylor, R. J. K. Tandem oxidation processes: The
direct conversion of activated alcohols into nitriles. Synlett 2002, 1291–1292; (b) Iida, S.;
Togo, H. Direct and facile oxidative conversion of primary, secondary, and tertiary
amines to their corresponding nitriles. Synlett 2006, 2633–2635; (c) Iida, S.; Togo, H.
Iron-catalyzed cross-coupling between alkenyl and dienyl sulfonates and functionalized
aryl copper reagents. Synlett 2006, 407–410, and all references cited therein.
6. (a) Rosenmund, K. W.; Struck, E. Das am ringkohlenstoff gebundene halogen und sein
ersatz durch andere substituenten, I: Mitteilung: Ersatz des halogens durch die carboxyl-
gruppe. Ber. 1919, 52, 1749–1756; (b) Braun, J. V.; Manz, G. Fluoranthen und seine
derivate, III: Mitteilung. Ann. 1931, 488, 111–126.
7. (a) Sandmeyer, T. Ueber die ersetzung der amidgruppe durch chlor in den aromatischen
substanzen. Ber. 1884, 17, 1633–1635; (b) Sandmeyer, T. Zur richtigstellung. Ber. 1890, 23,
1880–1881.
8. (a) Anand, N.; Owston, N. A.; Parker, A. J.; Slatford, P. A.; Williams, J. M. J.
Ruthenium-catalysed conversion of oxime ethers into nitriles. Tetrahedron Lett. 2007,
48, 7761–7763; (b) Hegarty, A. F.; Tuohey, P. J. Nitrile-forming eliminations from oxime
ethers. J. Chem. Soc., Perkin Trans. 2 1980, 1313–1317.
9. Yang, S. H.; Chang, S. Highly efficient and catalytic conversion of aldoximes to nitriles.
Org. Lett. 2001, 3, 4209–4211.
10. Sosnovsky, G.; Krogh, J. A. A versatile method for the conversion of aldoximes to nitriles
using selenium dioxide. Synthesis 1978, 703–705.
11. Olah, G. A.; Vankar, Y. D. Synthetic methods and reactions, 52: Preparation of nitriles
from aldoximes via dehydration with trimethylamine=sulfur dioxide complex. Synthesis
1978, 702–703.
12. Kim, J. N.; Chung, K. H.; Ryu, E. K. Improved dehydration method of aldoximes
to nitriles: Use of acetonitrile to triphenylphosphine=carbon tetrachloride system. Synth.
Commun. 1990, 20, 2785–2788.
13. Foley, H. G.; Dalton, D. R. Neutral conversion of aldoximes into nitriles at low
temperature. J. Chem. Soc., Chem. Commun. 1973, 628–629.