2698
K. Hasehira et al. / Carbohydrate Research 346 (2011) 2693–2698
concurrent 3-epimerization, because no significant peak corre-
sponding to -Psi was detectable when 2-AP catalyzed the Lobry
4. Discussion
D
rearrangement. Reaction mechanisms in the presence of 2-AP
and pyridine remain to be clarified.
From a practical viewpoint, it is advantageous that the Schiff
base stabilizes the monosaccharide, especially thermodynamically
For the study reported herein, we developed a chemical proce-
dure enabling systematic preparation of aldohexoses from keto-
hexoses, which uses 2-AP as the base catalyst for the Lobry
rearrangement14 and for Schiff-base formation with the reactant
ketohexose and product aldohexoses. The conditions used for the
ketose–aldose transformation and monoamine coupling were
unstable D-Gul and D-Ido. In a similar attempt, an O-isopropylidene
group has previously been shown to be effective to stabilize these
aldoses.36,37 When we use a larger column (e.g., 20 Â 250 mm), a g-
order of preparation of rare sugars is possible in theory by repeat-
ing the simple separation procedure. Now that these rare sugars
are readily available, their potential industrial and biological appli-
cations, as well as their bioactivities, can be characterized more
readily. These monosaccharides can now also be used as lead com-
pounds with their multiple chiral centers being targeted for the
first time for drug development.
20
acid) and 10
the monosaccharide Schiff-base derivatives of
and -Sor were 53%, 53%, 55%, and 63%, respectively (Table 1).
The ketose–aldose conversion ratio was much greater for -Psi
(82%) than for -Fru (36%), -Tag (49%), and -Sor (54%). Usually,
l
L of coupling reagent (552 mg of 2-AP and 200
mol ketohexose, at 90 °C for 60 min. Total yields of
-Fru, -Psi, -Tag,
lL of acetic
l
D
D
D
D
D
D
D
D
it has been found that the transformation precedes easily via base
catalysis when starting with ketoses and 2-AP. However, when
starting with aldoses, the transformation does not occur readily,
because aldoses are pyridylaminated much more readily than are
ketoses.30,31 Thus, the conversion ratio should depend, at least in
part, on the reaction rate of Schiff-base formation in comparison
with the forward isomerization rate. The detailed mechanism for
the 2-AP-catalyzed Lobry rearrangement is largely unknown, and
its elucidation is an important subject for future studies.
References
1. Matsuo, T.; Suzuki, H.; Hashiguchi, M.; Izumori, K. J. Nutr. Sci. Vitaminol. 2002,
48, 77–80.
2. Livesey, G.; Brown, J. C. J. Nutr. 1996, 126, 1601–1609.
3. Sui, L.; Dong, Y.; Watanabe, Y.; Yamaguchi, F.; Hatano, N.; Tsukamoto, I.;
Izumori, K.; Tokuda, M. Int. J. Oncol. 2005, 27, 907–912.
4. Bautista, D. A.; Pegg, R. B.; Shang, P. J. J. Food Prot. 2000, 63, 71–77.
5. Lawson, C. J.; Homewood, J.; Taylor, A. J. Neurobiol. Learn. Mem. 2002, 77, 17–28.
6. Varma, R.; French, D. Carbohydr. Res. 1972, 25, 71–79.
7. Izumori, K. Naturwissenschaften 2002, 89, 120–124.
8. Granström, T. B.; Takata, G.; Tokuda, M.; Izumori, K. J. Biosci. Bioeng. 2004, 97,
89–94.
9. Itoh, H.; Sato, T.; Izumori, K. J. Ferment. Bioeng. 1995, 80, 101–103.
10. Takeshita, K.; Suga, A.; Takada, G.; Izumori, K. J. Biosci. Bioeng. 2000, 90, 453–
455.
11. Wilson, D. M.; Ajl, S. J. Bacteriol. 1975, 73, 410–414.
12. Leang, K.; Maekawa, K.; Menavuvu, B. T.; Morimoto, K.; Granström, T. B.;
Takada, G.; Izumori, K. J. Biosci. Bioeng. 2004, 97, 383–388.
13. Yoshida, H.; Yamada, M.; Ohyama, Y.; Takada, G.; Izumori, K.; Kamitori, S. J.
Mol. Biol. 2007, 365, 1505–1516.
14. Speck, J. C. Adv. Carbohydr. Chem. 1958, 13, 63–103.
15. Izumori, K.; Miyoshi, K.; Tokuda, S.; Yamada, K. Appl. Environ. Microbiol. 1984,
48, 1055–1057.
16. Takeshita, K.; Shimonishi, T.; Izumori, K. J. Ferment. Bioeng. 1996, 81, 212–215.
17. Itoh, H.; Sato, T.; Takeuchi, T.; Anisur, R. K.; Izumori, K. J. Ferment. Bioeng. 1995,
79, 184–185.
18. Leang, . K.; Maekawa, K.; Menavuvu, B. T.; Morimoto, K.; Granstrom, T. B.;
Takada, G.; Izumori, K. J. Biosci. Bioeng. 2004, 97, 383–388.
19. Hasehira, K.; Nakakita, S.; Miyanishi, N.; Sumiyoshi, W.; Hayashi, S.; Takegawa,
K.; Hirabayashi, J. J. Biochem. 2009, 147, 501–509.
20. Hase, S.; Ikenaka, T.; Matsushima, Y. Biochem. Biophys. Res. Commun. 1978, 85,
257–263.
21. Kuraya, N.; Hase, S. J. Biochem. 1992, 112, 122–126.
22. Klausen, N. K.; Bayne, S.; Palm, L. Mol. Biotechnol. 1998, 9, 195–204.
23. Ohara, K.; Sano, M.; Kondo, A.; Kato, I. J. Chromatogr. 1991, 586, 35–41.
24. Korekane, H.; Tsuji, S.; Noura, S.; Ohue, M.; Sasaki, Y.; Imaoka, S.; Miyamoto, Y.
Anal. Biochem. 2007, 364, 37–50.
25. Suzuki, T.; Matsuo, I.; Totani, K.; Funayama, S.; Seino, J.; Taniguchi, N.; Ito, Y.;
Hase, S. Anal. Biochem. 2008, 381, 224–232.
26. Urashima, T.; Odaka, G.; Asakuma, S.; Uemura, Y.; Goto, K.; Senda, A.; Saito, T.;
Fukuda, K.; Messer, M.; Oftedal, O. T. Glycobiology 2009, 19, 499–508.
27. Hase, S. Methods Enzymol. 1994, 230, 225–237.
28. Nakakita, S.; Natsuka, S.; Okamoto, J.; Ikenaka, K.; Hase, S. J. Biochem. 2005, 138,
277–283.
29. Hase, S.; Hatanaka, K.; Ochiai, K.; Shimizu, H. Agric. Biol. Chem. 1992, 55, 283–
284.
30. Grill, E.; Huber, C.; Oefner, P.; Vorndran, A.; Bonn, G. Electrophoresis 1993, 14,
1004–1010.
31. Schwaiger, H.; Oefner, P. J.; Huber, C.; Grill, E.; Bonn, G. Electrophoresis 1994, 15,
941–952.
The optimum temperatures and reaction times for the TFA
treatment, which liberates the PA groups of the Schiff-base deriv-
atives are: 65 °C, 1 h (
D
-Psi); 75 °C, 1 h (D-Tag), and 70 °C, 1 h (D-
Sor). At less than optimum temperatures, the PA group was not
completely removed, whereas at higher temperatures side reac-
tions occurred destroying the monosaccharides. After HPLC separa-
tion, 1.1
obtained from 10
0.9 mol of -Gal (11%) were obtained from 10
and 2.3 mol of -Gul (16%) and 1.0 mol of -Ido (10%) were ob-
tained from 10 mol of -Sor.
l
mol of
D
-Alt (11%) and 2.9
l
l
mol of
mol of
D
-All (32%) were
-Tal (16%) and
mol of -Tag;
l
mol of -Psi; 1.5
D
D
l
D
l
D
l
D
l
D
l
D
The Lobry rearrangement has often been used to prepare ke-
toses from aldoses, but rarely aldoses from ketoses.14,32,33 H.O.L.
Fischer et al. reported that boiling pyridine was useful as both
the solvent and the base catalyst for ketose preparation34 because
it has a lesser tendency to induce side reactions than do aqueous
alkaline solutions, thereby allowing the aldose–ketose transforma-
tion to dominate with epimerization occurring mainly at the C2
position.34–37 Conversely, ketoses have rarely been used to produce
aldoses with boiling pyridine as the solvent. Moreover, as an exten-
sion of the classic Lobry rearrangement, 3-epimerization of the
ketoses occurs.35–37 Landis reported the transformation of
to
-Psi in boiling pyridine (48 h reaction period35). However, for
that reaction, the ketose–aldose conversion ratio was only 23%,
and the reaction was not very specific because -Glc (13%) and
-Man (10%) were present in addition to the expected -Psi (25%)
-Fru (52%). More recently, Ekeberg and co-workers reported
-Fru in boiling pyridine with aluminum
oxide as a catalyst to improve the reaction yield.37 They obtained
-Glc (22%), -Man (13%), -Psi (10%), and -Fru (55%) after a 9-h
reaction period. Unlike the two aforementioned reports, we found
that under our conditions 3-epimerization of -Fru to -Psi was
D-Fru
D
D
D
D
and
D
the transformation of
D
D
D
D
D
D
D
undetectable. Although classic Lobry rearrangement is considered
to proceed to equilibrium that depends on the relative thermody-
namic stabilities of the monosaccharide reactants and products, for
32. El Khadem, H. S.; Ennifar, S.; Isbell, H. S. Carbohydr. Res. 1987, 169, 13–21.
33. El Khadem, H. S.; Ennifar, S.; Isbell, H. S. Carbohydr. Res. 1989, 185, 51–59.
34. Fischer, H. O. L.; Taube, G.; Baer, E. Ber. Dtsch. Chem. Ges. 1927, 60, 479–485.
35. Landis, W. D. Carbohydr. Res. 1979, 70, 209–216.
example, Glc:Fru:Man (5:4:1),38 our method produced more
D-
Fru (35%) and less D-Glc (8%) than expected. A major difference be-
tween the transformations catalyzed by 2-AP and pyridine is that
2-AP exclusively catalyzes the ketose–aldose conversion with no
36. Ekeberg, D.; Morgenlie, S.; Stenstrøm, Y. Carbohydr. Res. 2005, 340, 373–377.
37. Ekeberg, D.; Morgenlie, S.; Stenstrøm, Y. Carbohydr. Res. 2007, 342, 1992–1997.
38. Angyal, S. J. Top. Curr. Chem. 2001, 215, 1–14.