638
R. Łyszczek, M. Iwan
Fig. 7 Activation energy,
E and pre-exponential factor,
A values as a function of the
reaction progress for the
desolvation of terbium a,
holmium b, erbium c and
ytterbium d dinicotinates
(a)
(c)
(b)
105
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
28
26
24
22
20
18
16
14
12
10
8
130
125
120
115
110
105
100
95
90
85
80
75
70
65
60
55
50
100
95
90
85
80
75
70
65
60
55
8
6
7
6
0
10 20 30 40 50 60 70 80 90 100
0
10 20 30 40 50 60 70 80 90 100
Reaction progress α/%
Reaction progress α/%
(d)
22
21
20
19
18
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
115
110
105
100
95
110
105
100
95
90
85
80
75
70
65
17
16
15
14
13
12
11
10
9
90
85
80
75
70
65
60
60
55
8
7
55
0
10 20 30 40 50 60 70 80 90 100
0
10 20 30 40 50 60 70 80 90 100
Reaction progress α/%
Reaction progress α/%
9. Haitao X, Zhihua L. Microporous rare-earth coordination poly-
mers cinstructed by 1, 4-cyclohexanedicarboxylate. Micropor
Mesopor Mater. 2008;118:522–6.
Conclusions
The desolvation process in the studied complexes was
investigated by means of the thermal analysis TG–DSC. It
is connected with the release of the dmf molecules from the
channels as well as those bonded with metal centres as
confirmed by the TG–FTIR analysis. The solid products of
desolvation of the formula Ln2pdc3(dmf)2 retain their
crystalline forms as follows from the XRD patterns. The
calculated values of the kinetic parameters refer to the
reaction of removal of dmf molecules from the inner
coordination sphere of lanthanide atoms. The activation
energies obtained are characteristic of the multistep process.
˚
10. Dietzel PDC, Panella B, Hirscher M, Bloom R. Fjellvag H.
Hydrogen adsorption in a nickel based coordination polymer with
open metal sites in the cylindrical cavities of the desolvated
framework. Chem Commun. 2006;9:959–61.
11. Choi HJ, Lee TS, Suh MP. Self-assembly of a molecular floral
lace with one-dimensional channels and inclusion of glucose.
Angew Chem Int Ed. 1999;38:1405–8.
12. Uemuru K, Matsuda R, Kitagawa S. Flexible microporous
coordination polymers. J Solid State Chem. 2005;178:2420–9.
13. Kitagawa S, Uemura K. Dynamic porous properties of coordi-
nation polymers inspired by hydrogen bonds. Chem Soc Rev.
2005;34:109–19.
14. Wang XF, Zhang Y-B, Huang H, Zhang J-P, Chen X-M.
Microwave-assisted solvothermal synthesis of a dynamic porous
metal-carboxylate framework. Crystal Growth Des. 2008;8:
4559–63.
15. Roques N, Maspoch D, Imaz I, Datcu A, Sutter J-P, Rovira C,
Veciana J. A three dimensional lanthanide-organic radical open
framework. Chem Commun. 2008;27:3160–62.
16. Guo X, Zhu G, Sun F, Li Z, Zhao X, Li X, Wang H, Qiu S.
Synthesis, structure, and luminescent properties of microporous
lanthanide metal-organic frameworks with inorganic rod-shaped
building units. Inorg Chem. 2006;45:2581–7.
17. Chen B, Wang L, Xiao Y, Fronczek FR, Xue M, Cui Y, Qian G.
A luminescent metal-organic framework with lewis basic pyridyl
sites for the sensing of metal ions. Angew Chem. 2009;121:
508–11.
References
1. Czaja AU, Trukhan N, Mu¨ller U. Industrial applications of metal-
organic frameworks. Chem Soc Rev. 2009;38:1284–93.
2. Ferey G. Some suggested perspectives for multifunctional hybrid
porous solids. Dalton Trans. 2009;23:4400–15.
3. Kesanli B, Lin W. Chiral porous coordination networks: rational
design and applications in enantioselective processes. Coord
Chem Rev. 2003;246:305–26.
4. Lu W-G, Jiang L, Feng X-L, Lu T-B. Three-dimensional lan-
thanide anionic metal-organic frameworks with tunable lumi-
nescent properties induced by cation exchange. Inorg Chem.
2009;48:6997–9.
18. Jia J, Lin X, Blake AJ, Champness NR, Hubberstey P, Shao L,
¨
Walker G, Wilson C, Schroder M. Triggered ligand release
´
coupled to framework rearrangement: generating crystalline
porous coordination materials. Inorg Chem. 2006;45:8838–40.
19. Wang G, Song T, Fan Y, Xu J, Wang M, Wang L, Zhang L,
Wang L. A porous lanthanide metal-organic framework with
luminescent property, nitrogen gas adsorption and high thermal
stability. Inorg Chem Commun. 2010;13:95–7.
20. Łyszczek R. Synthesis, structure, thermal and luminescent
behaviors of lanthanide—pyridine-3,5-dicarboxylate frameworks
5. Flores M, Caldin˜o U, Cordoba G, Arroyo R. Luminescent
enhancement of Eu3?-doped poly(acrylic acid) using 1,10-phe-
nanthroline as antenna ligand. Optical Mat. 2004;27:635–9.
6. Janiak C. Engineering coordination polymers towards applica-
tions. Dalton Trans. 2003;14:2781–804.
7. Robin AY, Fromm KM. Coordination polymer networks with O-
and N-donors: what they are, why and how they are made. Coord
Chem Rev. 2006;250:2127–57.
¨
¨
8. Senkovska I, Hoffman F, Froba M, Getzschmann J, Bohlmann W,
Kaskel S. New highly porous aluminium based metal-organic
frameworks: Al(OH)(ndc) (ndc = 2, 6-naphthalene dicarboxyl-
ate) and Al(OH)(bpdc) (bpdc = 4, 40-biphenyl dicarboxylate).
Micropor Mesopor Mater. 2009;122:93–8.
22. McCann K, Laane J. Raman and infrared spectra and theoretical
calculations of dipicolinic acid, dinicotinic acid, and their dia-
nions. J Mol Struc. 2008;890:346–58.
123