mental and theoretical investigations revealed that this disad-
vantage could be prevented if the chelating coordination groups
containing P, O, or N donor atoms were attached to the carbene
as hemilabile arms resulting in more stable and efficient
catalysts.6-9
A Highly Efficient, Recyclable Catalyst for C-C
Coupling Reactions in Ionic Liquids:
Pyrazolyl-Functionalized N-Heterocyclic Carbene
Complex of Palladium(II)
Recently, there have been a few reports of metal complexes
containing pyridyl-functionalized NHCs and their applications
as catalyst precursors for C-C coupling,7 copolymerization of
CO/norbornene,8 and polymerization of olefins.9 Their excellent
properties encouraged us to develop new types of phosphine-
free hemilabile catalysts. Since it is well-known that the
pyrazolyl ring is more weakly coordinating to metal centers than
the pyridyl ring,10 we reasoned that transition-metal complexes
of pyrazolyl-functionalized NHCs may facilitate oxidative
additions in a catalytic cycle and may form more efficient
catalyst precursors than those from a corresponding pyridyl ring.
However, these kinds of hemilabile compounds have not been
reported.
Ruihu Wang, Brendan Twamley, and Jean’ne M. Shreeve*
Department of Chemistry, UniVersity of Idaho,
Moscow, Idaho 83844-2343
ReceiVed October 6, 2005
Organic reactions that employed palladium(II) complexes of
pyridyl-functionalized hemilabile NHCs as catalysts were typi-
cally carried out in nonreusable organic solvents, such as
toluene, THF, DMF, and dioxane,7-9 and the expensive catalysts
could not be recovered and recycled. However, when the
reactions were performed in ionic liquids (ILs), important
advantages in immobilization and recycling of the catalyst were
available.11 The capacity of ILs to solvate both polar and
nonpolar species allows the dissolution of a wide range of
organic, inorganic, and organometallic compounds favoring the
formation of a homogeneous catalytic system. The organic
products can be readily separated from the palladium(II)
catalysts in the ionic liquids through simple distillation or
extraction with ether or hexane. Most importantly, the carbene
ligands do not readily dissociate from the metal center.3,7
Therefore, this means that an excess of ligand is unnecessary
and the catalyst can easily be immobilized in ILs. However,
many palladium(II)-catalyzed coupling reactions are carried out
in ILs in the presence of bulky phosphine ligands.12 The latter
are sensitive to oxygen and moisture, which can lead to catalyst
A hemilabile pyrazolyl-functionalized N-heterocyclic carbene
complex of palladium(II) has been synthesized. It is an
excellent catalyst for Heck and Suzuki cross-coupling
reactions in ionic liquids.
The initial isolation of a free carbene in 19911 has encouraged
much interest in the chemistry of N-heterocyclic carbenes
(NHCs) and their metal complexes.2 NHCs behave like typical
strong σ-donor ligands with negligible π-acceptor abilities.
Because these electronic characteristics are similar to those of
phosphines,3,4 they have played the same roles as well-studied
phosphine ligands in catalytic cycles. In addition, NHCs show
superior performance in many aspects over traditional phosphine
ligands, including ready preparation, air and moisture stability,
nontoxicity, low loading, and high efficency.4 Many metal
complexes of NHCs behave as highly efficient catalysts in
organic synthesis. However, facile reductive elimination with
hydrocarbyl ligands from Ni(II) and Pd(II) NHC complexes was
observed in some cases.5 The process suggested a potentially
important route to deactivation of catalysts. Subsequent experi-
(6) (a) Yang, C.; Lee, H. M.; Nolan, S. P. Org. Lett. 2001, 3, 1511. (b)
Danopoulos, A. A.; Winston, S.; Gelbrich, T.; Hursthouse, M. B.; Tooze,
R. P. Chem. Commun. 2002, 482. (c) Tulloch, A. A. D.; Winston, S.;
Danopoulos, A. A.; Eastham, G.; Hursthouse, M. B. J. Chem. Soc., Dalton
Trans. 2003, 699. (d) Batey, R. A.; Shen, M.; Lough, A. J. Org. Lett. 2002,
4, 1411. (e) Corma, A.; Garc´ıa, H.; Leyva, A. Tetrahedron 2004, 60, 8553.
(7) (a) McGuinness, D. S.; Cavell, K. J. Organometallics 2000, 19, 741.
(b) Tulloch, A. A. D.; Danopoulos, A. A.; Tooze, R. P.; Cafferkey, S. M.;
Kleinhenz S.; Hursthouse, M. B. Chem. Commun. 2001, 1247 (c) Magill,
A. M.; McGuinness, D. S.; Cavell, K. J.; Britovsek, G. J. P.; Gibson, V.
C.; White, A. J. P.; Williams, D. J.; White, A. H.; Skelton, B. W. J.
Organomet. Chem. 2001, 617, 546. (d) Gru¨ndemann, S.; Albrecht, M.;
Kovacevic, A.; Faller, J. W.; Crabtree, R. H. J. Chem. Soc., Dalton Trans.
2002, 2163.
(8) Chen, J. C. C.; Lin, I. J. B. Organometallics 2000, 19, 5113.
(9) Wang, X.; Liu, S.; Jin, G. X. Organometallics 2004, 23, 6002.
(10) Canty, A. J.; Lee, C. V. Organometallics 1982, 1, 1063. (b) Fornies,
J.; Martin, A.; Sicilia, V.; Martin, L. F. Chem. Eur. J. 2003, 9, 3427.
(11) (a) Chauvin, Y.; Mussmann, L.; Olivier, H. Angew Chem., Int. Ed.
Engl. 1995, 34, 2698. (b) Welton, T. Chem. ReV. 1999, 99, 2071. (c)
Wasserscheid, P.; Keim, W. Angew. Chem., Int. Ed. 2000, 39, 3772. (d)
Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. ReV. 2002, 102, 3667.
(e) Selvakumar, K.; Zapf, A.; Beller, M. Org. Lett. 2002, 4, 3031.
(12) (a) Carmicheal, A. J.; Earle, M. J.; Holbrey, J. D.; McCormac, P.
B.; Seddon, K. R. Org. Lett. 1999, 1, 997. (b) Xu, L.; Chen, W.; Ross, J.;
Xiao, J. Org. Lett. 2001, 3, 295. (c) Vallin, K. S. A.; Emilsson, P.; Larhed,
M.; Hallberg, A. J. Org. Chem. 2002, 67, 6243.
(1) Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991,
113, 361.
(2) (a) Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem.
ReV. 2000, 100, 39. (b) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41,
1290. (c) Huang, J.; Stevens, E. D.; Nolan, S. P.; Petersen, J. L. J. Am.
Chem. Soc. 1999, 121, 2674. (d) Campeau, L. C.; Thansandote, P.; Fagnou,
K. Org. Lett. 2005, 7, 1857.
(3) (a) Garrou, P. E. Chem. ReV. 1985, 85, 171. (b) Weskamp, T.; Kohl,
F. J.; Hieringer, W.; Gleich, D.; Herrmann, W. A. Angew. Chem., Int. Ed.
1999, 38, 2416.
(4) (a) Herrmann, W. A.; Schwarz, J.; Gardiner, M. G.; Spiegler, M. J.
Organomet. Chem. 1999, 575, 80. (b) Lee, M. T.; Hu, C. H. Organometallics
2004, 23, 976. (c) Whitcombe, N. J.; Hii, K. K.; Gibson, S. E. Tetrahedron
Lett. 2001, 57, 7449.
(5) (a) Cavell, K. J.; McGuinnes, D. S. Coord. Chem. ReV. 2004, 248,
671 and references therein. (b) McLachlan, F.; Mathews, C. J.; Smith, P.
J.; Welton, T. Organometallics 2003, 22, 5350.
10.1021/jo052098b CCC: $33.50 © 2006 American Chemical Society
Published on Web 12/01/2005
426
J. Org. Chem. 2006, 71, 426-429