Nanosci., 2006, 457; (c) Y.-W. Jun, J.-S. Choi and J. Cheon, Chem.
Commun., 2007, 1203.
Table 2 Recycling of MNP-3 for the coupling reaction of p-bromo-
acetophenone with imidazole
2 (a) D. Lee, J. Lee, H. Lee, S. Jin, T. Hyen and B. M. Kin, Adv. Synth.
Catal., 2006, 348, 41; (b) S. Ding, Y. Xing, M. Radosz and Y. Shen,
Macromolecules, 2006, 39, 6399; (c) Y. Zheng, P. D. Stevens and Y. Gao,
J. Org. Chem., 2006, 71, 537; (d) P. D. Stevens, G. Li, J. Fan, M. Yen
and Y. Gao, Chem. Commun., 2005, 4435.
Entrya
Recycle
Yieldb (%)
1
2
3
4
a
1st
98
98
95
93
2nd
3rd
4th
´
3 (a) C. O. Da´laigh, S. A. Corr, Y. Gunko and S. J. Connon, Angew.
Chem., Int. Ed., 2007, 46, 4329; (b) M. Kawamura and K. Sato, Chem.
Commun., 2006, 4718; (c) A. Hu, G. T. Yee and W. Lin, J. Am. Chem.
Soc., 2005, 127, 12486; (d) L. Bromberg and T. A. Halton, Ind. Eng.
Chem. Res., 2005, 44, 7991; (e) T.-J. Yoon, W. Lee, Y.-S. Oh and
J.-K. Lee, New J. Chem., 2003, 27, 227.
All reactions were performed at 110 uC for 24 h in DMF (0.2 ml)
with 0.1 mmol of p-bromoacetophenone, 0.11 mmol of imidazole,
CuI (10 mol%), MNP-3 (20 mol%) and Cs2CO3 (2 equiv.).
b
Determined by 1H NMR spectroscopy.
4 R. Abu-Rezig, H. Alper, D. Wang and M. L. Post, J. Am. Chem. Soc.,
2006, 128, 5279.
5 (a) J. C. Antilla, A. Klapars and S. L. Buchwald, J. Am. Chem. Soc.,
2002, 124, 11684; (b) A. Klapras, J. C. C. Antilla, X. Huang and
S. L. Buchwald, J. Am. Chem. Soc., 2001, 123, 7727.
6 (a) E. Alcalde, I. Dinares, S. Rodriguez and C. G. deMiguel, Eur. J.
Org. Chem., 2005, 1637; (b) E. K. Bekedam, G. M. Visser, A. van
den Hoogenband, J. W. Terpstra, P. C. J. Kamer, P. W. N. M.
van Leeuwena and G. P. F. van Srtijdoncka, Tetrahedron lett., 2005, 46,
2405.
7 Y. Xie, S. Pi, J. Wang, D. Yin and J. Li, J. Org. Chem., 2006, 71, 8324.
8 R. A. Altman and S. L. Buchwald, Org. Lett., 2006, 8, 2779.
9 H.-J. Cristau, P. P. Cellier, J.-F. Spindler and M. Taillefer, Chem.–Eur.
J., 2004, 10, 5607.
efficiently recovered from the reaction by decantation of the
reaction mixture in the presence of the external magnet and used in
up to four runs with little loss of activity. We believe that this
magnetic nanoparticle-supported proline ligand can also be useful
in biomedicine/biotechnology and drug delivery by acting as an
anchor to further immobilized biomolecules and drug candidates.
New investigations of magnetic nanoparticle-supported proline
ligands are underway.
We are grateful to Natural Sciences and Engineering Research
Council of Canada (NSERC), and to Sasol Technology, for
support of this research.
10 (a) D. Ma and Q. Cai, Synlett, 2004, 128; (b) H. Zhang, Q. Cai and
D. Ma, J. Org. Chem., 2005, 70, 5164; (c) X. Lu, Z. Wang and W. Bao,
Tetrahedron, 2006, 62, 4756.
11 L. Zhu, L. Cheng, Y. Zhang, R. Xie and J. You, J. Org. Chem., 2006,
72, 2737.
12 R. Massart, IEEE Trans. Magn., 1981, 17, 1247.
13 Other bases such as K2CO3, Na2CO3 and K3PO4 were found to be less
effective compared to Cs2CO3.
Notes and references
1 For recent reviews, see: (a) A.-H. Lu, E. L. Salabas and F. Schu¨th,
Angew. Chem., Int. Ed., 2007, 46, 1222; (b) J. Fan and Y. Gao, J. Exp.
This journal is ß The Royal Society of Chemistry 2007
Chem. Commun., 2007, 4809–4811 | 4811