Communication
Dalton Transactions
studied using rigid docking.12b These docking studies further
support the GLUT-internalization hypothesis herein
proposed.21
(b) J. E. Debreczeni, A. N. Bullock, G. E. Atilla,
D. S. Williams, H. Bregman, S. Knapp and E. Meggers,
Angew. Chem., Int. Ed., 2006, 45, 1580; (c) K. S. Smalley,
R. Contractor, N. K. Haass, A. N. Kulp, G. E. Atilla-
Gokcuman, D. E. Williams, H. Bregman, K. T. Flaherty,
M. S. Soengas, E. Meggers and M. Herlyn, Cancer Res.,
2007, 67, 209; (d) R. Anand, J. Maksimoska, N. Pagano,
E. Y. Wong, P. A. Gimotty, S. L. Diamond, E. Meggers and
R. Marmorstein, J. Med. Chem., 2009, 52, 1602.
5 (a) V. Moreno, M. Font-Bardia, T. Calvet, J. Lorenzo,
F. X. Avilés, M. H. Garcia, T. S. Morais, A. Valente and
M. P. Robalo, J. Inorg. Biochem., 2011, 105, 241;
(b) A. I. Tomaz, T. Jakusch, T. S. Morais, F. Marques,
R. F. M. Almeida, F. Mendes, E. A. Enyedy, I. Santos,
J. C. Pessoa, T. Kiss and M. H. Garcia, J. Inorg. Biochem.,
2012, 117, 261; (c) T. S. Morais, F. Santos, L. Côrte-Real,
F. Marques, M. P. Robalo, P. J. A. Madeira and
M. H. Garcia, J. Inorg. Biochem., 2013, 122, 8; (d) A. Valente,
M. H. Garcia, F. Marques, Y. Miao, C. Rousseau and
P. Zinck, J. Inorg. Biochem., 2013, 127, 79.
6 (a) P. R. Florindo, I. J. Marques, C. D. Nunes and
A. C. Fernandes, J. Organomet. Chem., 2014, 760, 240;
(b) P. R. Florindo, D. M. Pereira, P. M. Borralho,
C. M. P. Rodrigues, M. F. M. Piedade and A. C. Fernandes,
J. Med. Chem., 2015, 58, 4339.
7 (a) M. G. V. Heiden, L. C. Cantley and C. B. Thompson,
Science, 2009, 324, 1029; (b) O. Warburg, Science, 1956, 123,
309.
8 (a) R. A. Medina and G. I. Owen, Biol. Res., 2002, 35, 9;
(b) M. L. Macheda, S. Rogers and J. D. Best, J. Cell Physiol.,
2005, 202, 654.
9 L. Szablewski, Biochim. Biophys. Acta, Rev. Cancer, 2013,
1835, 164.
Next, we evaluated the potential role of NTs in the cellular
uptake of nucleoside derivative compounds 7Ru and 8Ru,
bearing appended 5′- and 3′-thymidine moieties, respectively.
In this framework, we performed uptake competition experi-
ments using 200 µM 2′-deoxyadenosine (2′-DAd) or 10 µM
dipyridamole to block the internalization of the nucleoside
derivative compounds. Once again, 4Ru was used as a negative
control. Surprisingly, no significant changes in cell viability
were observed for any of the compounds in neither inhibition
setting tested (data not shown). These results suggest that thy-
midine derivative compounds 7Ru and 8Ru are not interna-
lized via NT, an advantage over organic NA chemotherapeutics
(vide supra).
In summary, new cyclopentadienyl-ruthenium(II) com-
pounds were designed and synthesized, and their cytotoxicity
in HCT116 colon cancer cells was evaluated with good results.
The cellular uptake mechanism of bio-appended compounds
was evaluated, revealing that 5Ru and 6Ru were most readily
internalized through GLUT transmembrane proteins and that
this facilitated diffusion has a major contribution to their tox-
icity. Although several carbohydrate-containing ruthenium
anticancer compounds have been reported in the last few
years,5d,6,18 the question whether they were actually taken up
by the GLUTs is herein addressed for the first time. Thus,
these are, to the best of our knowledge, the first examples of
ruthenium anticancer glycoconjugates with GLUT-mediated
cellular uptake.
This research was supported by the Portuguese Foundation
for Science and Technology (FCT) through projects PTDC/
QUI-QUI/102114/2008 and PTDC/QUI-QUI/110532/2009 and
annual funds UID/QUI/00100/2013 and UID/MULTI/00612/ 10 (a) H. Parekh and H. Simpkins, Gen. Pharmacol., 1997, 29,
2013. PRF and DMP (SFRH/BD/96517/2013) thank FCT for
grants. ACF (IF/00849/2012) and PJC (IF/00069/2014) acknowl-
edge FCT for the “Investigador FCT” Program. Authors thank
the Portuguese NMR and X-Ray Networks (IST-UTL Centers)
for access to facilities.
167; (b) P. Som, H. L. Atkins, D. Bandoypadhyay,
J. S. Fowler, R. R. MacGregor, K. Matsui, Z. H. Oster,
D. F. Sacker, C. Y. Shiue, H. Turner, C. N. Wan, A. P. Wolf
and S. V. Zabinski, J. Nucl. Med., 1980, 21, 670.
11 (a) M.-W. Louie, H.-W. Liu, M. H.-C. Lam, Y.-W. Lam and
K. K.-W. Lo, Chem. – Eur. J., 2011, 17, 8304; (b) K. Y. Zhang,
K. K.-S. Tso, M.-W. Louie, H.-W. Liu and K. K.-W. Lo,
Organometallics, 2013, 32, 5098.
12 (a) P. Liu, Y. Lu, X. Gao, R. Liu, D. Zhang-Negrerie, Y. Shi,
Y. Wang, S. Wanga and Q. Gao, Chem. Commun., 2013, 49,
2421; (b) M. Patra, T. C. Johnstone, K. Suntharalingam and
S. J. Lippard, Angew. Chem., Int. Ed., 2016, 55, 1.
Notes and references
1 (a) Y. K. Yan, M. Melchart, A. Habtemariam and
P. J. Sadler, Chem. Commun., 2005, 4764; (b) G. Süss-Fink,
Dalton Trans., 2010, 39, 1673; (c) A. Bergamo, C. Gaiddon,
J. H. M. Schellens, J. H. Beijnen and G. Sava, J. Inorg. 13 J. S. Choi and A. J. Berdis, Future Med. Chem., 2012, 4, 1461.
Biochem., 2012, 106, 90.
14 (a) C. McGuigan, P. Murziani, M. Slusarczyk, B. Gonczy,
J. V. Voorde, S. Liekens and J. Balzarini, J. Med. Chem.,
2011, 54, 7247; (b) M. Slusarczyk, M. H. Lopez, J. Balzarini,
M. Mason, W. G. Jiang, S. Blagden, E. Thompson,
E. Ghazaly and C. McGuigan, J. Med. Chem., 2014, 57, 1531.
2 M. Groessl, E. Reisner, C. G. Hartinger, R. Eichinger,
O. Semenova, A. R. Timerbaev, M. A. Jakupec, V. B. Arion
and B. K. Keppler, J. Med. Chem., 2007, 50, 2185.
3 C. G. Hartinger, S. Zorbas-Seifried, M. A. Jakupec,
B. Kynast, H. Zorbas and B. K. Keppler, J. Inorg. Biochem., 15 A. Maity, T. Teets, N. Deligounul, A. J. Berdis and
2006, 100, 891. T. G. Gray, Chem. – Eur. J., 2013, 19, 15924.
4 (a) H. Bregman, D. S. Williams, G. E. Atilla, P. J. Carroll and 16 R. Siegel, D. Naishadham and A. Jemal, CA-Cancer J. Clin.,
E. Meggers, J. Am. Chem. Soc., 2004, 126, 13594; 2013, 63, 11.
Dalton Trans.
This journal is © The Royal Society of Chemistry 2016