Biochemistry
Article
(4) Weinbach, E. C. (1954) The effect of pentachlorophenol on
oxidative phosphorylation. J. Biol. Chem. 210, 545−550.
(5) Steiert, J. G., Thoma, W. J., Ugurbil, K., and Crawford, R. L.
(1988) 31P nuclear magnetic resonance studies of effects of some
chlorophenols on Escherichia coli and a pentachlorophenol-degrading
bacterium. J. Bacteriol. 170, 4954−4957.
(6) Saber, D. L., and Crawford, R. L. (1985) Isolation and
characterization of Flavobacterium strains that degrade pentachlor-
ophenol. Appl. Environ. Microbiol. 50, 1512−1518.
(7) Radehaus, P. M., and Schmidt, S. K. (1992) Characterization of a
novel Pseudomonas sp. that mineralizes high concentrations of
pentachlorophenol. Appl. Environ. Microbiol. 58, 2879−2885.
(8) Resnick, S. M., and Chapman, P. J. (1994) Physiological
properties and substrate specificity of a pentachlorophenol-degrading
Pseudomonas species. Biodegradation 5, 47−54.
NADPH is consumed unproductively. Because the KM for PCP
is lower than that for TCHQ, and PCP is present at a higher
concentration in vivo,21 the active site of PCP hydroxylase will
be primarily engaged in converting PCP to TCBQ. The
uncoupling that occurs with PCP, and to a lesser extent with
TCHQ, will deplete NADPH and generate substantial
quantities of H2O2, causing oxidative stress. TCBQ generated
by PCP hydroxylase may damage cytoplasmic proteins if it is
not efficiently captured and converted to TCHQ by TCBQ
reductase. The multiple shortcomings of PCP hydroxylase and
the intrinsic toxicity of TCBQ may explain the inability of S.
chlorophenolicum to degrade high levels of PCP.11
ASSOCIATED CONTENT
* Supporting Information
Methods and supplementary Figures 1−3. This material is
■
(9) Leung, K. T., Cassidy, M. B., Shaw, K. W., Lee, H., Trevors, J. T.,
Lohmeier-Vogel, E. M., and Vogel, H. J. (1997) Pentachlorophenol
biodegradation by Pseudomonas spp. UG25 and UG30. World J.
Microbiol. Biotechnol. 13, 305−313.
S
(10) Tiirola, M. A., Mannisto, M. K., Puhakka, J. A., and Kulomaa, M.
S. (2002) Isolation and characterization of Novosphingobium sp. strain
MT1, a dominant polychlorophenol-degrading strain in a groundwater
bioremediation system. Appl. Environ. Microbiol. 68, 173−180.
(11) Dai, M., and Copley, S. D. (2004) Genome shuffling improves
degradation of the anthropogenic pesticide pentachlorophenol by
Sphingobium chlorophenolicum ATCC 39723. Appl. Environ. Microbiol.
70, 2391−2397.
(12) Nagata, Y., Ohtsubo, Y., Endo, R., Ichikawa, N., Ankai, A.,
Oguchi, A., Fukui, S., Fujita, N., and Tsuda, M. (2010) Complete
genome sequence of the representative γ-hexachlorocyclohexane-
degrading bacterium Sphingobium japonicum UT26. J. Bacteriol. 192,
5852−5853.
AUTHOR INFORMATION
Corresponding Author
Funding
This work was supported by National Institutes of Health
Grant GM078554 to S.D.C. and a CIRES Visiting Fellowship
to K.H.
■
Notes
The authors declare no competing financial interest.
K.H. and J.R. are co-first authors.
(13) Copley, S. D., Rokicki, J., Turner, P., Daligault, H., Nolan, M.,
and Land, M. (2012) The whole genome sequence of Sphingobium
chlorophenolicum L-1: Insights into the evolution of the pentachlor-
ophenol degradation pathway. Genome Biol. Evol. 4, 184−198.
(14) Dai, M., Rogers, J. B., Warner, J. R., and Copley, S. D. (2003) A
previously unrecognized step in pentachlorophenol degradation in
Sphingobium chlorophenolicum is catalyzed by tetrachlorobenzoquinone
reductase (PcpD). J. Bacteriol. 185, 302−310.
(15) Xun, L., Topp, E., and Orser, C. S. (1992) Purification and
characterization of a tetrachloro-p-hydroquinone reductive dehaloge-
nase from a Flavobacterium sp. J. Bacteriol. 174, 8003−8007.
(16) Orser, C. S., Dutton, J., Lange, C., Jablonski, P., Xun, L., and
Hargis, M. (1993) Characterization of a Flavobacterium glutathione-S-
transferase gene involved in reductive dehalogenation. J. Bacteriol. 175,
2640−2644.
ACKNOWLEDGMENTS
We thank Dr. Richard Shoemaker and Dr. Natasha
Chumachenko for assistance with NMR spectroscopy.
■
ABBREVIATIONS
■
β-ME, β-mercaptoethanol; IPTG, isopropyl β-D-thiogalactopyr-
anoside; PCP, pentachlorophenol; TCBQ, tetrachlorobenzo-
quinone; TCHQ, tetrachlorohydroquinone; TCP, 2,3,5,6-
tetrachlorophenol; THTH, 2,3,5,6-tetrakis[(2-hydroxyethyl)-
thio]-1,4-hydroquinone; 2,4,6-TriCP, 2,4,6-trichlorophenol;
3,4,5-TriCP, 3,4,5-trichlorophenol; 2,6-DCP, 2,6-dichlorophe-
nol; 3,5-DCP, 3,5-dichlorophenol; TCEP, tris(2-carboxyethyl)-
phosphine.
(17) Xun, L., Bohuslavek, J., and Cai, M. (1999) Characterization of
2,6-dichloro-p-hydroquinone 1,2-Dioxygenase (PcpA) of Sphingomo-
nas chlorophenolica ATCC 39723. Biochem. Biophys. Res. Commun. 266,
322−325.
(18) Xu, L., Lawson, S. L., Resing, K., Babbitt, P. C., and Copley, S.
D. (1999) Evidence that pcpA encodes 2,6- dichlorohydroquinone
dioxygenase, the ring-cleavage enzyme required for pentachlorophenol
degradation in Sphingomonas chlorophenolica strain ATCC 39723.
Biochemistry 38, 7659−7669.
(19) Ohtsubo, Y., Miyauchi, K., Kanda, K., Hatta, T., Kiyohara, H.,
Senda, T., Nagata, Y., Mitsui, Y., and Takagi, M. (1999) PcpA, which is
involved in the degradation of pentachlorophenol in Sphingomonas
chlorophenolica ATCC39723, is a novel type of ring-cleavage
dioxygenase. FEBS Lett. 459, 395−398.
(20) Cai, M., and Xun, L. (2002) Organization and regulation of
pentachlorophenol-degrading genes in Sphingobium chlorophenolicum
ATCC 39723. J. Bacteriol. 184, 4672−4680.
ADDITIONAL NOTE
The S. chlorophenolicum L-1 strain originally deposited as
ATCC 39723 has lost the ability to degrade PCP. It has been
replaced by ATCC 53874.
■
a
REFERENCES
■
(1) Miller, L. L., Ingerman, L. D., and Singh, M. (2001) Toxicological
profile for pentachlorophenol. Agency for Toxic Substances and
Disease Registry, U.S. Department of Health and Human Services,
Washington, DC.
(2) Lin, P.-H., Nakamura, J., Yamaguchi, S., Upton, P. B., La, D. K.,
and Swenberg, J. A. (2001) Oxidative damage and direct adducts in
calf thymus DNA induced by the pentachlorophenol metabolites,
tetrachlorohydroquinone and tetrachloro-1,4-benzoquinone. Carcino-
genesis 22, 627−634.
(3) Wispriyono, B., Matsuoka, M., and Igisu, H. (2002) Effects of
pentachlorophenol and tetrachlorohydroquinone on mitogen-activated
protein kinase pathways in Jurkat T cells. Environ. Health Perspect. 110,
139−143.
(21) McCarthy, D. L., Claude, A., and Copley, S. D. (1997) In vivo
levels of chlorinated hydroquinones in a pentachlorophenol-degrading
bacterium. Appl. Environ. Microbiol. 63, 1883−1888.
3859
dx.doi.org/10.1021/bi300261p | Biochemistry 2012, 51, 3848−3860