Y. Cheneviere et al. / Applied Catalysis A: General 387 (2010) 129–134
133
5. Conclusions
The H2O2–Au system has proven to be particularly effective in
the mild oxidation of substituted phenols in the liquid phase. How-
ever, the product distribution is different from that obtained using
Ti-containing silica catalysts: whilst Ti is very selective to the cor-
responding benzoquinones, Au directs the reaction to C–C coupling
products. This has been explained by the low stability of Au–H2O2
adducts as compared to Ti–OOH species, thus favoring the forma-
tion of phenoxy radicals and free-radical coupling reactions, and
inhibiting the catalytic formation of benzoquinone. The reaction
rate and product selectivities depend on the nature of the solvent
but yields in biaryl compounds higher than 90% have been obtained
in methanol. Gold is thus complementary to Ti-silicas and could be
a promising catalyst for the clean synthesis of biaryl compounds
(low temperature, no by-products, green oxidants).
References
[1] S. Patai, Z. Rappoport (Eds.), The Chemistry of Quinonoid Compounds, Wiley,
New York, 1988.
[2] O.A. Kholdeeva, O.V. Zalomaeva, A.B. Sorokin, I.D. Ivanchikova, C.D. Pina, M.
Rossi, Catal. Today 121 (2007) 58–64.
[3] O.A. Kholdeeva, A.V. Golovin, R.I. Maksimovskaia, I.V. Kozhevnikov, J. Mol. Catal.
75 (1992) 235–244.
[4] A.B. Sorokin, A. Tuel, New J. Chem. 23 (1999) 473–476.
[5] A.B. Sorokin, A. Tuel, Catal. Today 57 (2000) 45–59.
[6] A.B. Sorokin, S. Mangematin, C. pergrale, J. Mol. Catal. A: Chem. 182–183 (2002)
267–281.
[7] O.V. Zalomaeva, A.B. Sorokin, New J. Chem. 30 (2006) 1768–1773.
[8] O.V. Zalomaeva, O.A. Kholdeeva, A.B. Sorokin, C.R. Chim. 10 (2007) 598–603.
[9] S. Gontier, A. Tuel, Appl. Catal. A: Gen. 143 (1996) 125–135.
[10] S. Gontier, A. Tuel, Stud. Surf. Sci. Catal. 105 (1997) 1085–1092.
[11] N.N. Trukhan, V.N. Romannikov, E.A. Paukshtis, A.N. Shmakov, O.A. Kholdeeva,
J. Catal. 202 (2001) 110–117.
[12] O.A. Kholdeeva, N.N. Trukhan, M.P. Vanina, V.N. Romannikov, V.N. Parmon, J.
Mrowiec-Bialon, A.B. Jarzebski, Catal. Today 75 (2002) 203–209.
[13] N.N. Trukhan, O.A. Kholdeeva, Kinet. Catal. 44 (3) (2003) 347–352.
[14] O.A. Kholdeeva, O.V. Zalomaeva, A.N. Shmakov, M.S. Melgunov, A.B. Sorokin, J.
Catal. 236 (2005) 62–68.
Fig. 2. 2,3,6-Trimethylphenol conversion over Ti-HMS (ꢁ) and Au/TiO2 (᭹) in MeOH
(a) and MeCN (b).
[15] O.A. Kholdeeva, I.D. Ivanchikova, M. Guidotti, C. Pirovano, N. Ravasio, M.V.
Barmatova, Y.A. Chesalov, Adv. Synth. Catal. 351 (2009) 1877–1889.
[16] P.T. Tanev, M. Chibwe, T.J. Pinnavaia, Nature 368 (1994) 321–323.
[17] M. Haruta, CATTECH 6 (2002) 102–115.
[18] A.S.K. Hashmi, G.J. Hutchings, Angew. Chem. Int. Ed. Engl. 45 (2006) 7896–7936.
[19] S. Chretien, S.K. Buratto, H. Metiu, Curr. Opin. Solid State Mater. Sci. 11 (2007)
62–75.
certainly unstable under reaction conditions and rapidly dissoci-
ate to regenerate the reduced gold nanoparticle. The unstability
of the Au–peroxo species may explain why phenoxy radicals are
not oxidized to quinone but simply recombine to form the biaryl
compound (Route 2).
[20] G.J. Hutchings, M. Brust, H. Schmidbaur, Chem. Soc. Rev. 37 (2008) 1759–
1765.
More information about the gold-catalyzed process has been
obtained from the evolution of 2,3,6-trimethyl phenol conver-
obtained over Au/TiO2 is almost identical to that observed over
Ti-HMS materials: the apparent initial reaction rate is identical
on both catalysts, suggesting that the rate-limiting step is inde-
pendent of the catalyst nature; the reaction rate then decreases
with increasing TMP conversion (Fig. 2a). By contrast, in acetone
or acetonitrile, the initial reaction rates observed over Au/TiO2 are
low and TMP conversions vary almost linearly with time, whilst
conversion profiles are basically unchanged over Ti-HMS (Fig. 2b).
Additional experiments performed with various TMP and Au/TiO2
concentrations gave similar linear profiles and quite close reaction
of the reaction. This is attributed to the complexing nature of
the C O and especially C N functions of the solvents towards
gold. Cyanides are actually widely used to extract gold from ores
ously described [32]. Although no gold leaching is observed under
these conditions, it is likely that acetone and acetonitrile solvent
molecules complex gold particles, thereby limiting their acces-
sibility, as recently described with 2,2ꢀ-azo-bis-isobutyronitrile
[43]. On the other hand, Ti sites are not affected by these
functions.
[21] A.S.K. Hashmi, G.J. Hutchings, Chem. Soc. Rev. 37 (2008) 1766–1775.
[22] C. della Pina, E. Falletta, L. Prati, M. Rossi, Chem. Soc. Rev. 37 (2008) 2077–
2095.
[23] A. Corma, H. Garcia, Chem. Soc. Rev. 37 (2008) 2096–2126.
[24] Y.M. Liu, H. Tsunoyama, T. Akita, T. Tsukuda, Chem. Lett. 39 (3) (2010) 159–161.
[25] H.Y. Song, G. Li, X.S. Wang, Y.J. Xu, Catal. Today 149 (1–2) (2010) 127–131.
[26] Y. Jin, D.Y. Zhuang, N.Y. Yu, H.H. Zhao, Y. Ding, L.S. Qin, J.F. Liu, D.H. Yin, H.Y.
Qiu, Z.H. Fu, D.L. Yin, Micropor. Mesopor. Mater. 126 (1–2) (2010) 159–165.
[27] Y.M. Liu, H. Tsunoyama, T. Akita, T. Tsukuda, J. Phys. Chem. C 113 (31) (2009)
13457–13461.
[28] H.Y. Song, G. Li, X.S. Wang, Micropor. Mesopor. Mater. 120 (3) (2009) 346–
350.
[29] L. Prati, P. Spontoni, A. Gaiassi, Top. Catal. 52 (3) (2009) 288–296.
[30] T. Ishida, K. Kuroda, N. Kinoshita, W. Minagawa, M. Haruta, J. Colloid Interface
Sci. 323 (1) (2008) 105–111.
[31] S. Ivanova, C. Petit, V. Pitchon, Appl. Catal. A: Gen. 267 (2004) 191–201.
[32] E. Quinet, PhD Thesis, University of Lyon 1, 2008.
[33] S. Gontier, A. Tuel, Zeolites 15 (1995) 601–610.
[34] B. Notari, Adv. Catal. 41 (1996) 253–334.
[35] P. Ratnasamy, D. Srinivas, H. Knözinger, Adv. Catal. 48 (2004) 1–169.
[36] P. Lignier, F. Morfin, S. Mangematin, L. Massin, J.L. Rousset, V. Caps, Chem.
Commun. (2007) 186–188.
[37] P. Lignier, F. Morfin, L. Piccolo, J.L. Rousset, V. Caps, Catal. Today 122 (2007)
284–291.
[38] M.D. Hughes, Y.-J. Xu, P. Jenkins, P. McMorn, P. Landon, D.I. Enache, A.F. Carley,
G.A. Attard, G.J. Hutchings, F. King, E.H. Stitt, P. Johnston, K. Griffin, C.J. Kiely,
Nature 437 (2005) 1132–1135.
[39] P. Lignier, S. Mangematin, F. Morfin, J.L. Rousset, V. Caps, Catal. Today 138 (2008)
50–54.
[40] O.A. Kholdeeva, I.D. Ivanchikova, M. Guidotti, N. Ravasio, M. Sgobba, M.V. Bar-
makova, Catal. Today 141 (2009) 330–336.