P. Stanley, C. R. Bertozzi, G. W. Hart and M. E. Etzler, Essentials
of Glycobiology, Cold Spring Harbor Press, 2009, 2nd edn,
pp. 199–218; (c) X. Chen and A. Varki, ACS Chem. Biol., 2010,
5
, 163–176.
2
(a) L.-M. Chen, O. Blixt, J. Stevens, A. S. Lipatov, C. T. Davis,
B. E. Collins, N. J. Cox, J. C. Paulson and R. O. Donis, Virology,
2
012, 424, 154; (b) M. A. Langereis, Q. Zeng, B. Heesters,
E. G. Huizinga and R. J. deGroot, PLoS Pathog., 2012,
, e1002492; (c) J. C. C. Lai, J.-M. Garcia, J. C. Dyason,
8
R. Bohm, P. D. Madge, F. J. Rose, J. M. Nicholls, J. S. Malik
Peiris, T. Haselhorst and M. von Itzstein, Angew. Chem., Int. Ed.,
2
8
012, 51, 2221; (d) H. Ogura, Proc. Jpn. Acad., Ser. B., 2011,
7, 328.
3
4
(a) A. Takeshita, N. Yamakage, K. Shinjo, t. Ono, I. Hirano,
S. Nakamura, K. Shigeno, T. Tobita, M. Maekawa, H. Kiyoi,
T. Naoe, K. Ohnishi, Y. Sugimoto and R. Ohno, Leukemia, 2009,
23, 1372; (b) D. H. Nguyen, P. Tangvoranuntakul and A. Varki,
J. Immunol., 2005, 175, 228.
R. Schauer, Sialic acids: Chemistry, Metabolism and Function, Cell
Biology Monographs, Springer-Verlag, New York, 1982, vol. 10.
R. Schauer, Adv. Carbohydr. Chem. Biochem., 1982, 40, 131.
(a) B. E. Collins, O. Blixt, A. R. DeSieno, N. Bovin, J. D. Marth
and J. C. Paulson, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 6104;
5
6
Fig. 3 Flow cytometry graph of CHO-CD22 with 1 and 2: CHO-CD22
cells were left untreated (tinted area), incubated with 50 mM of compound
1
(red line area, positive control), compound 2 (black line area).
(
b) S. Han, B. E. Collins, P. Bengtson and J. C. Paulson, Nat.
Chem. Biol., 2005, 1, 93; (c) B. Blixt, S. Han, L. Liao, Y. Zeng,
J. Hoffmann, S. Futakawa and J. C. Paulson, J. Am. Chem. Soc.,
dependent lectin recognition and binding. Fluorescently
labeled sialic acid micelles were prepared by mixing 5 mg of
fluorescein dye with equal amounts of ligands 3 and 4 in water,
followed by 10 K cutoff microcon filtration to obtain fluorescein
hosted sialic acid micelles. The sialic acid–CD22 interactions
on the cell surfaces were then measured by flow cytometry. As
shown in Fig. 3, compound 2 did not bind effectively to CD22-
transfected CHO-cells, indicating the requirement of native
sialic acid orientation for the recognition. On the other hand,
the CHO-K1 cell line served as a negative control and showed
no major uptake of either 1 or 2 (data not shown). These
findings indicate that compound 2 is a potential sialic acid
moiety for fine-tuning sialic acid based ligand–receptor inter-
action in mammalian SBP.
2
008, 28, 6680; (d) M. K. O’Reilly, B. E. Collins, S. Han, L. Liao,
C. Rillahan, P. I. Kitaov, D. R. Bundle and J. C. Paulson, J. Am.
Chem. Soc., 2008, 130, 7736.
M. Yamaguchi, H. Ishida, A. Kanamori, R. Kannagi and M. Kiso,
Carbohydr. Res., 2003, 338, 2793.
(a) N. K. Sauter, J. E. Hanson, G. D. Glick, J. H. Brown, R. L.
Crowther, S.-J. Park, J. J. Skehel and D. C. Wiley, Biochemistry,
7
8
1
2
992, 31, 9609; (b) S. J. Gamblin and J. J. Skehel, J. Biol. Chem.,
010, 285, 28403; (c) C. Mitsuoka, K. Ohmori, N. Kimura,
A. Kanamori, S. Komba, H. Ishida, M. Kiso and R. Kannagi,
Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 1597; (d) A. Cariappa,
H. Takematsu, H. Liu, S. Diaz, K. Haider, C. Boboila, G. Kalloo,
M. Connole, H. N. Shi, N. Varki, A. Varki and S. Pillai, J. Exp.
Med., 2009, 206, 125.
(a) P. V. Santacroce and A. Basu, Angew. Chem., Int. Ed., 2003,
42, 95; (b) Y. Nagasaki, K. Yasugi, Y. Yamamoto, A. Harada and
K. Kataoka, Biomacromolecules, 2001, 2, 1067; (c) X. Qu,
V. V. Khutoryanskiy, A. Stewart, S. Rahman, B. Papahadjopoulos-
Sternberg, C. Dufes, D. McCarthy, C. G. Wilson, R. Lyons,
K. C. Carter, A. Schatzlein and I. F. Uchegbu, Biomacromolecules,
2006, 7, 3452; (d) R. A. Bader, A. L. Silvers and N. Zhang,
Biomacromolecules, 2011, 12, 314.
9
We have shown that structural rearrangement of sialic acid
moieties around a multivalent system could modulate the
ligand–receptor interactions. Surface plasmon resonance
(
SPR) and in vitro binding assays show that out of five
1
0 R. L. Miller and J. D. Cannon Jr, Prog. Clin. Biol. Res., 1984,
57, 31.
potential sialic acid binding plant and human lectins (SBP),
only CD22 (Siglec-2) abolishes binding with an amphiphile at
the C-9 position of sialic acid under biophysical conditions,
while O-sialoside was used as a positive control. These differences
in the relative binding affinities of two human lectins provide a
novel lead in the development of inhibitors and biomarkers
for specific human SBP. Such studies are currently being
considered. Furthermore, stereo-specificity of the carboxylic
1
11 (a) M. J. Linman, J. D. Taylor, H. Yu, X. Chen and Q. Chen, Anal.
Chem., 2008, 80, 4007; (b) R. Schauer, S. Kelm, G. Reuter,
P. Roggentin and L. Shaw, in Biology of the Sialic Acid, ed.
A. Rosenberg, New York, 1995, p. 7; (c) J. A. Wasylnka,
M. L. Simmer and M. M. Moore, Microbiology, 2001, 147, 869;
(d) J. M. Wolosin and Y. Wang, Invest. Ophthalmol. Visual Sci.,
1
995, 36, 2277.
1
2 (a) C. R. Bertozzi, Chem. Biol., 1995, 2, 703; (b) T. A. Springer,
Cell, 1994, 76, 301; (c) S. D. Rosen and C. R. Bertozzi, Curr. Opin.
Cell Biol., 1994, 6, 663.
2
+
acid residue of sialic acids also influences Ca
mediated
carbohydrate–carbohydrate interactions. These observations
provide a novel lead in the development of inhibitors and
biomarkers for specific sialic acid binding proteins. Such
studies are currently being considered.
13 (a) W. C. Chen, G. C. Completo, D. S. Sigal, P. R. Crocker,
A. Saven and J. C. Paulson, Blood, 2010, 115, 4778–4786;
(
9
b) N. Razi and A. Varki, Proc. Natl. Acad. Sci. U. S. A., 1998,
5, 7469–7474.
14 (a) R. Roy, J. Carbohydr. Chem., 2002, 21, 769; (b) A. Hasegawa,
J. Nakamura and M. Kiso, J. Carbohydr. Chem., 1986, 5, 11.
R. K. and R. Y. thank IISER, Pune, Indo-German (DST-MPG)
program, and CSIR, India, for financial support. We thank
Prof. Ajit Varki for providing the CHO-CD22, CHO-K1 cell
lines and CD22-Fc.
1
1
5 K. D. Hardman and C. F. Ainswort, Biochemistry, 1972, 11, 4910.
6 (a) R. Codd, Chem. Commun., 2004, 2653; (b) J.-P. Behr and
J.-M. Lehn, FEBS Lett., 1973, 31, 297; (c) J.-P. Behn and
J.-M. Lehn, FEBS Lett., 1972, 22, 178.
1
7 (a) S. Kelm, R. Brossmer, R. Isecke, H. J. Gross, K. Strenge and
R. Schauer, Eur. J. Biochem., 1998, 263, 18507; (b) C. Oetke,
R. Brosmer, L. R. Mantey, S. Hinderlich, R. Isecke,
W. Reutter, O. T. Keppler and M. Pawlite, J. Biol. Chem., 2002,
277, 6688.
Notes and references
1
(a) T. Angata and A. Varki, Chem. Rev., 2002, 102, 439;
b) A. Varki, R. D. Cummings, J. D. Esko, H. H. Freeze,
(
This journal is c The Royal Society of Chemistry 2012
Chem. Commun.