Journal of Sulfur Chemistry 87
4
.1.3. Entry 8, Table 1: (benzimidazol-2-yl) benzyl sulfoxide
IR (neat): 1023 cm 1.
−
1
H NMR (200 MHz, CDCl3): δ = 4.32 (d, J = 13.2 Hz, 1H), 4.56 (d, J = 13.2 Hz, 1H,), 7.04–
7
.40 (m, 8H), 7.61–7.64 (m, 2H).
C NMR (50 MHz, CDCl3): δ 60.3, 115.3, 122.8, 123.2, 127.3, 127.6, 127.8, 129.4, 150.9.
1
3
4
.1.4. Entry 9, Table 1: Methyl 2-(phenylsulfinyl)acetate
IR (neat): 1038 cm 1.
−
1
H NMR (200 MHz, CDCl3): δ = 3.65 (d, J = 13.6 Hz, 1H), 3.68 (s, 3H), 3.83 (d, J = 13.6 Hz,
1
H), 7.50–7.53 (m, 3H), 7.64–7.67 (m, 2H).
C NMR (50 MHz, CDCl3): δ 51.8, 60.5, 123.0, 128.4, 130.8, 141.9, 164.2.
1
3
4
.1.5. Entry 11, Table 1: allyl phenyl sulfoxide
IR (neat): 1043, 1660 cm 1.
−
1
H NMR (200 MHz, CDCl3): δ = 3.37–3.57 (m, 2H), 5.08–5.28 (m, 2H), 5.47–5.68 (m, 1H),
7
.42–7.54 (m, 5H).
1
3
C NMR (50 MHz, CDCl3): δ 60.7, 123.9, 124.3, 125.2, 129.0, 131.1, 142.8.
4
.1.6. Entry 13, Table 1: Benzyl 4-bromobenzyl sulfoxide
IR (KBr, cm 1) 1029.
−
1
H NMR (500 MHz, CDCl3) δ: 3.78 (d, J = 13.1 Hz, 1H), 3.89 (d, J = 13.1 Hz, 1H), 3.95 (s,
2
H), 7.2 (d, J = 8.3 Hz, 2H), 7.32–7.33 (m, 2H), 7.40–7.44 (m, 3H), 7.54 (d, J = 8.3 Hz, 2H).
C NMR (50 MHz, CDCl3): δ 56.2, 57.5, 122.6, 128.4, 129.1, 129.2, 129.8, 130.1, 131.8, 132.1.
1
3
Acknowledgements
We are thankful to the Razi University Research Council for the partial support of this work.
References
(1) Patai, S.; Rappoport, Z.; Stirling, C.J.M., Eds. The Chemistry of Sulphones and Sulphoxides; John Wiley: NewYork,
1988; Vol. 3, p 56.
(
(
(
(
2) Page, P.C.B., Ed. Organosulfur Chemistry II. Springer: Berlin, 1999.
3) Huang, J.-Y.; Li, S.-J.; Wang, Y.-G. Tetrahedron Lett. 2006, 47, 5637–5640.
4) Gross, Z.; Mahammed, A. J. Mol. Catal. A Chem. 1999, 142, 367–372.
5) (a) Kowalski, P.; Mitka, K.; Ossowska, K.; Kolarska, Z. Tetrahedron 2005, 61, 1933–1953; (b) Baciocchi, E.; Gerini,
M.F.; Lapi, A. J. Org. Chem. 2004, 69, 3586–3589; (c) Xu, W.L.; Li, Y.Z.; Zhang, Q.S.; Zhu, H.S. Synthesis 2004,
227–232; (d) Sabir, H.M.; Chandrasekar, D.M.; Madhavi, A.K. Synth. Commun. 1998, 28, 939–943; (e) Koposov,
A.Y.; Zhdankin, V.V. Synthesis 2005, 22–24.
(6) (a) Kim, S.S.; Rajagopal, G. Synthesis 2003, 2461–2463; (b) Li, Z.; Xia, C.-G.; Xu, C.-Z. Tetrahedron Lett. 2003,
44, 9229–9232; (c) Li, Z.; Xia, C.-G. J. Mol. Catal. A Chem. 2004, 214, 95–101; (d) Jeyakumar, K.; Chand, D.K.
Tetrahedron Lett. 2006, 47, 4573–4576.
(7) (a) Yuan, Y.; Bian, Y. Tetrahedron Lett. 2007, 48, 8518–8520; (b) Tohma, H.; Takizawa, S.; Watanabe, H.; Kita, Y.
Tetrahedron Lett. 1998, 39, 4547–4550; (c) Ochiai, M.; Nakanishi, A.; Ito, T. J. Org. Chem. 1997, 62, 4253–4259;
(d) Mohammadpoor-Baltork, I.; Memarian, H.R.; Bahrami, K. Can. J. Chem. 2005, 83, 115–121; (e) Prasanth, K.L.;
Maheswaran, H. J. Mol. Catal. A Chem. 2007, 268, 45–49.
(
(
8) Jones, C.W., Ed. Applications of Hydrogen Peroxide and Derivatives; Royal Society of Chemistry: Cambridge, 1999.
9) Strukul, G., Ed. Catalytic Oxidations with Hydrogen Peroxide as Oxidant; KluwerAcademic Publishers: Dordrecht,
1
992.
10) (a) Bahrami, K. Tetrahedron Lett. 2006, 47, 2009–2012; (b) Khodaei, M.M.; Bahrami, K.; Khedri, M. Can. J. Chem.
007, 85, 7–11; (c) Khodaei, M.M.; Bahrami, K.; Karimi, A. Synthesis 2008, 1682–1684; (d) Bahrami, K.; Khodaei,
(
2