AN EFFICIENT REDUCTION OF NITRO AND BROMINE NAPHTHALENE DERIVATIVES
841
acetonitrile thus giving the crude product which was
recrystallized from methanol and dried. Cyan-blue
solid, yield 88%. H NMR spectrum, δ, ppm: 3.85 s
(3H), 3.90 s (3H), 6.74–7.13 m (2H), 7.29-7.48 m
(1H), 7.54–7.87 m (2H). 13C NMR spectrum, δ, ppm:
55.51, 55.72, 105.05, 107.99, 108.26, 114.92, 125.94,
128.76, 132.23, 133.67, 154.69, 155.48.
ACKNOWLEDGMENTS
The study was supported by Shanghai Science and
Technology Innovation Program (no. 15431900700),
Shanghai Natural Science Fund (no. 16ZR1418100)
and China Postdoctoral Science Foundation (no.
2014M561479).
1
REFERENCES
1-Bromo-4,8-dimethoxy-5-nitronaphthalene (6).
70% Nitric acid (1.5 mL) in acetic acid (1.5 mL) was
added slowly to a stirred suspension of 1-bromo-4,8-
dimethoxynaphthalene (5.3 g, 20 mmol) in acetic acid
(50 mL) and the mixture was stirred for at 0°C. Upon
completion of the process (TLC) the precipitate was
filtered off, washed with water and purified by column
chromatography to give an off-white solid, yield 48%.
1H NMR spectrum, δ, ppm: 3.80 s (3H), 3.93 s (3H),
7.03–7.14 m (2H), 7.73–7.91 m (2H). 13C NMR spec-
trum, δ, ppm: 55.70, 56.27, 104.82, 107.00, 107.61,
108.26, 108.73, 122.61, 133.66, 134.59, 153.03, 157.36.
1. Crucitti, G.C., Pescatori, L., Messore, A., Madia, V.N.,
Pupo, G., Saccoliti, F., Scipione, L., Tortorella, S., Di
Leva, F.S., Cosconati, S., Novellino, E., Debyser, Z.,
Christ, F., Costi, R., and Santo, R.D., Eur. J. Med.
Chem., 2015, vol. 101, p. 288. doi 10.1016/
j.ejmech.2015.06.036
2. Di Santo, R., Costi, R., Cuzzucoli Crucitti, G.,
Pescatori, L., Rosi, F., Scipione, L., Celona, D.,
Vertechy, M., Ghirardi, O., Piovesan, P., Marzi, M.,
Caccia, S.,Guiso, G., Giorgi, F., and Minetti, P., J. Med.
Chem., 2012, vol. 55, no. 19, p. 8538. doi 10.1021/
jm301105m
3. Sun, S., Qiao, B., Jiang, N., Wang, J., Zhang, S., and
Peng, X., Org. Lett., 2014, vol. 16, no. 4, p. 1132.
doi:10.1021/ol500284p
(1,4,5,8-Tetramethoxy-2-naphthyl)methanol
(11). To a stirred suspension of 1,4,5,8-tetramethoxy-2-
naphthaldehyde (1.4 g, 5 mmol) and activated Zn
powder (1.3 g, 20 mmol) in DMF (20 mL) was added
85% hydrazine hydrate (1.2 g, 20 mmol) at 50°C under
the atmosphere of N2. Upon completion of the reaction
(TLC), Zn powder was filtered off. The filtrate was
poured into ice water (500 mL) and the product
extracted with ethyl acetate. The combined organic
layer was washed with brine, dried over Na2SO4,
filtered, concentrated, and purified by flash chromato-
graphy. Yield 71%. 1H NMR spectrum, δ, ppm: 3.58 s
(3H), 3.70 s (3H), 3.74 s (3H), 3.80 s (3H), 5.24 s
(1H), 5.27–5.41 m (2H), 6.69–6.90 m (3H). 13C NMR
spectrum, δ, ppm: 56.92, 57.37, 57.41, 62.49, 70.54,
108.04, 108.61, 108.97, 119.53, 122.19, 133.82,
146.36, 150.03, 151.33, 152.32.
4. Brito, R.M. and Vaz, W.L., Anal. Biochem., 1986, vol. 152,
no. 2, p. 250. doi 10.1016/0003-2697(86)90406-9
5. Orlov, V.Y., Begunov, R., Demidova, N.Y., and Rusa-
kov, A., Russ. J. Gen. Chem., 2006, vol. 76, no. 1, p. 76.
doi 10.1134/S1070363206010154.
6. Li, Z., Li, J., Liu, J., Zhao, Z., Xia, C., and and Li, F.,
ChemCatChem, 2014, vol. 6, no. 5, p. 1333. doi
10.1002/cctc.201301037
7. Du, W., Chen, G., Nie, R., Li, Y., and Hou, Z., Catal.
Commun., 2013, vol. 41, p. 56. doi 10.1016/
j.catcom.2013.06.038
8. Cai, S., Duan, H., Rong, H., Wang, D., Li, L., He, W.,
and Li, Y., ACS Catal., 2013, vol. 3, no. 4, p. 608. doi
10.1021/cs300689w
9. Islam, S., Tuhina, K., Mubarak, M., and Mondal, P.,
J. Mol. Catal. A: Chem., 2009, vol. 297, no. 1, p. 18.
doi 10.1016/j.molcata.2008.09.010
CONCLUSIONS
An efficient synthetic method for reduction of
nitronaphthalene derivatives by using commercial
hydrazine hydrate and Zn powder is reported. Besides
the nitro group, it can be suitable for bromo and formyl
groups. DMF was determined to be the most
appropriate solvent. Mild heating could accelerate the
reaction. Contrary to the earlier methods, the current
approach is characterized by decreased experimental
cost and no pressure equipment involved. Probably the
method can be extended to reducing some polycyclic
nitro and bromine compounds.
10. Serin, S., Transit. Metal. Chem., 2001, vol. 26, no. 3,
p. 300. doi 10.1023/A:1007163418687
11. King, L. C., Kohan, M. J., Brooks, L., Nelson, G. B.,
Ross, J. A., Allison, J., Adams, L., Desai, D., Amin, S.,
and Padgett, W., Chem. Res. Toxicol., 2001, vol. 14,
no. 6, p. 661. doi 10.1021/tx0001373
12. Thomson, R., Race, E., and Rowe, F., J. Chem. Soc.
(Resumed), 1947, p. 350.
13. Wang, R., Zheng, X., Zhou, W., Peng, Y., Zhu, M., and
Li, S., J. Chem. Res. 2010, vol. 34, no. 9, p. 520. doi
10.3184/030823410X12843836823191
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 87 No. 4 2017