ChemCatChem
10.1002/cctc.202001191
COMMUNICATION
reactions employing the (S)-selective Rh-TsDPEN metal catalyst
combined with GOase achieved excellent ee as well as
conversions for the chiral alcohol products (Scheme 3).
employing ATH alone. The deracemisation system was also
expanded to
a range of secondary alcohols with varied
functionalities. ee and conversions to some of the
challenging/problematic substrates under sole TH/ATH conditions
were also improved.
Acknowledgements
This work was funded by the National Natural Science
Foundation of China (21706205), the China Postdoctoral Science
Foundation (2018M633518), and the Natural Science Foundation
of Shaanxi Province (2018JQ2062). D.P. Debecker thanks the
Francqui foundation for his Francqui Research Professor chair.
We also thank the Instrument Analysis Center of Xi'an Jiaotong
University for help with characterizations.
Scheme 3. Deracemisation employing (S)-selective Rh-TsDPEN.
Since in this case the metal catalyst also contributes to the
final ee of the product, the reaction conditions were less restrictive
lower concentrations of enzyme and transition metal catalysts
can be used) compared to the reactions employing the racemic
transition metal catalysts.
(
Keywords: biocatalysis • chiral secondary alcohols • galactose
oxidase • deracemisation • transfer hydrogenation
1
00
100
9
8
7
6
5
4
0
0
0
0
0
0
9
9
9
9
9
8
8
8
6
4
2
0
8
6
ee
Acetophenone
Alcohol
[1].
2].
N.J. Turner, Curr. Opin. Chem. Biol. 2010, 14 (2), 115-121.
(
M. Rachwalski, N. Vermue, F. P. J. T. Rutjes, Chem. Soc. Rev. 2013, 42
(
24), 9268-9282.
A. Diaz-Rodriguez, I. Lavandera, V. Gotor, Curr. Green Chem. 2015, 2
2), 192-211.
[3].
(
30
[
4].
N. J. Turner, Curr. Opin. Chem. Biol. 2004, 8 (2), 114-119.
2
1
0
0
0
[5].
F. Escalettes, N. J. Turner, Chembiochem 2008, 9 (6), 857-860.
B. Yuan, A. Page, C. P. Worrall, F. Escalettes, S. C. Willies, J. J. W.
McDouall, N. J. Turner, J. Clayden, Angew. Chem., Int. Ed. 2010, 49 (39),
[
[
[
6].
7].
8].
0
10
20
30
Time [h]
7010-7013.
S. Staniland, B. Yuan, N. Gimenez-Agullo, T. Marcelli, S. C. Willies, D.
Figure 1. Deracemisation of 1-(4-nitrophenyl)ethanol generated by (S)-
selective Rh-TsDPEN (Time = 0 h marked as the start time of the second
oxidation step). Reaction conditions: 1). Reduction. 50 mM 4'-nitro-
acetophenone, 30 °C, 250 rpm, 0.2 mM (S)-selective Rh-TsDPEN (S/C =
M. Grainger, N. J. Turner, J. Clayden, Chem. - Eur. J. 2014, 20 (41),
13084-13088.
S. Herter, S. M. Mckenna, A. R. Frazer, S. Leimkühler, A. J. Carnell, N.
J. Turner, Chemcatchem 2015, 7 (15), 2313-2317.
2
50), 147 mM HCOONa, total volume: 0.5 mL. 2). Oxidation. 14.6 µM GOase
M3-5, 22 µM HRP, 0.4 µM catalase.
[9].
J. B. Rannes, A. Ioannou, S. C. Willies, G. Grogan, C. Behrens, S. L.
Flitsch, N. J. Turner, J. Am. Chem. Soc. 2011, 133 (22), 8436-8439.
[
10]. J. Vilim, T. Knaus, F. G. Mutti, Angew. Chem., Int. Ed. 2018, 57 (43),
4240-14244.
1
In Figure 1, time = 0 h represents the start of the second
[
[
11]. W. R. Birmingham, N. J. Turner, ACS Catal. 2018, 8 (5), 4025-4032.
12]. A. T. Pedersen, W. R. Birmingham, G. Rehn, S. J. Charnock, N. J. Turner,
J. M. Woodley, Org. Process Res. Dev. 2015, 19 (11), 1580-1589.
step of the reaction (oxidation) after the reduction had completed,
leaving 87% ee of the alcohol and <5% ketone in the reaction
mixture. After addition of the components from the oxidations
system, ee and conversions reached 99% and 96% after 3 h,
respectively. These results were achieved with only 14.6 µM
GOase at S/C = 250, which means that the concentrations of both
enzymes and metal catalysts were lower than the
deracemisations using the racemic metal catalyst (rac)-Ir-
TsCYDN. In the end, the combination of GOase with (S)-selective
Rh-TsDPEN leads to a 12% improvement in ee compared with
performing only the reduction of the ketone by (S)-selective Rh-
TsDPEN, which demonstrates the effectiveness of the
deracemisation method.
[13]. I. Karume, M. Takahashi, S. M. Hamdan, M. M. Musa, Chemcatchem
2016, 8 (8), 1599-1599.
[14]. C. V. Voss, C. C. Gruber, K. Wolfgang, Angew. Chem. 2010, 47 (4), 741-
7
45.
15]. F. D. Nasario, P. J. S. Moran, J. A. R. J. Rodrigues, Braz. Chem. Soc.
019, 30 (4), 772-779.
[
[
2
16]. M. Schober, M. Toesch, T. Knaus, G. A. Strohmeier, B. van Loo, M.
Fuchs, F. Hollfelder, P. Macheroux, K. Faber, Angew. Chem., Int. Ed.
2013, 52 (11), 3277-3279.
[17]. E. Liardo, N. Rios-Lombardia, F. Moris, J. Gonzalez-Sabin, F. Rebolledo,
Eur. J. Org. Chem. 2018, (23), 3031-3035.
[18]. F. G. Mutti, A. Orthaber, J. H. Schrittwieser, J. G. de Vries, R. Pietschnig,
W. Kroutil, Chem. Comm. 2010, 46 (42), 8046-8048.
In summary, we have successfully combined an enantio-
selective enzyme GOase with a racemic metal catalyst (rac)-Ir-
TsCYDN to achieve the deracemisation of secondary alcohols to
highly enantiomerically enriched chiral alcohol products. By
optimising each of the biocatalytic oxidation and chemocatalytic
reduction steps, deracemisation was achieved by employing the
enzyme GOase ((R)-selective) and a racemic transition metal
catalyst. Outstanding ee and conversions were obtained. When
the (S)-selective Rh-TsDPEN was applied in the deracemisation
process, both ee and conversions were improved compared to
[
[
[
19]. B. Martín-Matute, M. Edin, K. Bogár, F. B. Kaynak, J. –E. Bäckvall, J. Am.
Chem. Soc. 2005, 127 (24), 8817-8825.
20]. B. A. Persson, A. L. E. Larsson, M. L. Ray, J. –E. Bäckvall, J. Am. Chem.
Soc. 1999, 121 (8), 1645-1650.
21]. R. M. Haak, F. Berthiol, T. Jerphagnon, A. J. A. Gayet, C. Tarabiono, C.
P. Postema, V. Ritleng, M. Pfeffer, D. B. Janssen, A. J. Minnaard, B. L.
Feringa, J. G. de Vries, J. Am. Chem. Soc. 2008, 130 (41), 13508-13509.
[22]. C. V. Voss, C. C. Gruber, K. Faber, T. Knaus, P. Macheroux, W. Kroutil,
J. Am. Chem. Soc. 2008, 130 (42), 13969-13972.
4
This article is protected by copyright. All rights reserved.