1035, 849, 812, 706. Anal. Calc. for [PdCl2LMes]2(μ-DABCO)
(C48H62Cl4N6Pd2): C, 53.49; H, 5.80; N, 7.80%. Found: C,
53.51; H, 5.38; N, 7.67%.
References
1 (a) A. de Meijere and F. Diederich, Metal-Catalyzed Cross-Coupling
Reactions, Wiley-VCH, Weinheim, vol. 2, 2004; (b) M. Beller and
C. Bolm, Transition Metals for Organic Synthesis, Wiley-VCH, Wein-
heim, 2nd edn, 2004.
2 For reviews see: (a) T. Hiyama, J. Organomet. Chem., 2002, 653, 58–61;
(b) S. E. Denmark and C. S. Regens, Acc. Chem. Res., 2008, 41, 1486–
1499.
[PdCl2LiPr]2(μ-DABCO) (4). Compound 4 was synthesized by
a similar method for the preparation of 2 except that DABCO
1
was used instead of pyrazine. Yield: 54%. H-NMR (400 MHz,
3 For selected examples, see: (a) Y. Hatanaka and T. Hiyama, J. Org.
Chem., 1988, 53, 918–920; (b) J.-Y. Lee and G. C. Fu, J. Am. Chem.
Soc., 2003, 125, 5616–5617; (c) D. A. Powell and G. C. Fu, J. Am.
Chem. Soc., 2004, 126, 7788–7789; (d) S. E. Denmark, J. Am. Chem.
Soc., 1999, 121, 5821–5822; (e) S. E. Denmark and S. A. Tymonko,
J. Am. Chem. Soc., 2005, 127, 8004–8005; (f) X. Dai, N. A. Strotman
and G. C. Fu, J. Am. Chem. Soc., 2008, 130, 3302–3303; (g) L. Zhang
and J. Wu, J. Am. Chem. Soc., 2008, 130, 12250–12251; (h) T. Yanase,
Y. Monguchi and H. Sajiki, RSC Adv., 2012, 2, 590–594.
4 (a) K.-I. Gouda, E. Hagiwara, Y. Hatanaka and T. Hiyama, J. Org.
Chem., 1996, 61, 7232–7233; (b) E. Hagiwara, K.-i. Gouda, Y. Hatanaka
and T. Hiyama, Tetrahedron Lett., 1997, 38, 439–442; (c) L. Ackermann,
C. J. Gschrei, A. Althammer and M. Riederer, Chem. Commun., 2006,
1419–1421; (d) D.-H. Lee, J.-Y. Jung and M.-J. Jin, Chem. Commun.,
2010, 46, 9046–9048; (e) S. M. Raders, J. V. Kingston and J. G. Verkade,
J. Org. Chem., 2010, 75, 1744–1747; (f) E. Alacid and C. Nájera, Adv.
Synth. Catal., 2006, 348, 945–952; (g) Z.-S. Gu, L.-X. Shao and
J.-M. Lu, J. Organomet. Chem., 2012, 700, 132–134; (h) J. Ju, H. Nam,
H. M. Jung and S. Lee, Tetrahedron Lett., 2006, 47, 8673–8678.
5 (a) F. Glorius, N-Heterocyclic Carbenes in Transition Metal Catalysis,
Springer, Berlin, 2007; (b) S. P. Nolan, N-Heterocyclic Carbenes in Syn-
thesis, Weinheim, Wiley-VCH, 2006; (c) A. J. Arduengo III,
R. L. Harlow and M. Kline, J. Am. Chem. Soc., 1991, 113, 361–363;
(d) S. Díez-González, N. Marion and S. P. Nolan, Chem. Rev., 2009, 109,
3612–3676; (e) D. Pugh and A. A. Danopoulos, Coord. Chem. Rev.,
2007, 251, 610–641; (f) P. L. Arnold and I. J. Casely, Chem. Rev., 2009,
109, 3599–3611; (g) F. E. Hahn, Dalton Trans., 2009, 6893 and follow-
ing papers in this issue.
6 For selected examples, see: (a) N. Marion and S. P. Nolan, Acc. Chem.
Res., 2008, 41, 1440–1449; (b) G. C. Fortman and S. P. Nolan, Chem.
Soc. Rev., 2011, 40, 5151–5169; (c) S. B. Blakey and
D. W. C. MacMillan, J. Am. Chem. Soc., 2003, 125, 6046–6047;
(d) J. Liu and M. Robins, Org. Lett., 2004, 6, 3421–3423; (e) J. Liu and
M. Robins, Org. Lett., 2005, 7, 1149–1151; (f) L. Ray, S. Barman,
M. M. Shaikh and P. Ghosh, Chem.–Eur. J., 2008, 14, 6646–6655;
(g) J. Zhou and G. C. Fu, J. Am. Chem. Soc., 2003, 125, 14726–14727;
(h) L. Yang, P. Guan, P. He, Q. Chen, C. Cao, Y. Peng, Z. Shi, G. Pang
and Y. Shi, Dalton Trans., 2012, 41, 5020–5025.
7 For selected examples, see: (a) S. Roy and H. Plenio, Adv. Synth. Catal.,
2010, 352, 1014–1022; (b) X.-Y. Xu, B.-C. Xu, Y.-X. Li and S. H. Hong,
Organometallics, 2010, 29, 6343–6349; (c) D. R. Snead, S. Inagaki,
K. A. Abboud and S. H. Hong, Organometallics, 2010, 29, 1729–1739;
(d) C.-Y. Liao, K.-T. Chan, C.-Y. Tu, Y.-W. Chang, C.-H. Hu and
H. M. Lee, Chem.–Eur. J., 2009, 15, 405–417; (e) G. Altenhoff,
R. Goddard, C. W. Lehmann and F. Glorius, J. Am. Chem. Soc., 2004,
126, 15195–15201; (f) H. Lebel, M. K. Janes, A. B. Charette and
S. P. Nolan, J. Am. Chem. Soc., 2004, 126, 5046–5047; (g) Y.-Q. Tang,
J.-M. Lu and L.-X. Shao, J. Organomet. Chem., 2011, 696, 3741–3744.
8 (a) M. Poyatos, W. McNamara, C. Incarvito, E. Clot, E. Peris and
R. H. Crabtree, Organometallics, 2008, 27, 2128–2136; (b) D. S. Clyne,
J. Jin, E. Genest, J. C. Gallucci and T. V. RajanBabu, Org. Lett., 2000, 2,
1125–1128; (c) P. Chiu, C. Lai, C. Chang, C. Hu and H. M. Lee, Organo-
metallics, 2005, 24, 6169–6178; (d) W. Wei, Y. Qin, M. Luo, P. Xia and
M. S. Wong, Organometallics, 2008, 27, 2268–2272; (e) T. Zhang,
W. Wang, X. Gu and M. Shi, Organometallics, 2008, 27, 753–757;
(f) F. Li, S. Bai and T. S. Andy Hor, Organometallics, 2008, 27,
672–677.
CDCl3): δ = 7.47 (t, 4H, J = 7.6 Hz, p-ArH), 7.30 (d, 8H,
J = 7.6 Hz, m-ArH), 7.05 (s, 4H, Im-H), 3.04 (heptet, 4H, J =
6.8 Hz, CH(CH3)2), 2.74 (s, 12H, DABCO-H), 1.38 (d, 24H, J =
6.4 Hz, CH(CH3)2), 1.06 (d, 24H, J = 6.8 Hz, CH(CH3)2).
13C-NMR (100 MHz, CDCl3): δ = 153.1, 146.7, 135.1, 130.0,
124.9, 123.8, 49.0, 28.9, 26.2, 23.2. IR (KBr, cm−1): 3131,
3069, 2965, 2869, 1696, 1591, 1465, 1446, 1416, 1381, 1364,
1349, 1330, 1286, 1268, 1212, 1161, 1124, 1068, 1059, 946,
820, 801, 757, 746, 705. Anal. Calc. for [PdCl2LiPr]2(μ-DABCO)
(C60H86Cl4N6Pd2): C, 57.84; H, 6.96; N, 6.74%. Found: C,
57.98; H, 6.64; N, 7.02%.
General procedure for the NHC–Pd (2) catalyzed Hiyama
reactions
A sealable reaction tube equipped with a magnetic stir bar was
charged with aryl chloride (0.50 mmol), phenyltrialkyoxysilane
(0.75 mmol), TBAF (1.0 mmol), NHC–Pd complex (2, 3.0 mg,
0.5 mmol%), and anhydrous toulene (2.0 mL). The mixture was
heated in an oil bath at 120 °C and stirred for 5 h. The organic
phase was evaporated under reduced pressure and the product
was purified by column chromatography using silica gel.
X-Ray crystallography
Data collection was performed on a Bruker-AXS SMART CCD
area detector diffractometer at 293 K using ω rotation scans with
a scan width of 0.3° and Mo Kα radiation (λ = 0.71073 Å).
Multi-scan corrections were applied using SADABS.18 Structure
solutions and refinements were performed with the SHELX-97
package.19 All non-hydrogen atoms were refined anisotropically
by full-matrix least-squares on F2. The hydrogen atoms were
included in idealized geometric positions with thermal par-
ameters equivalent to 1.2 times those of carbon and nitrogen
atoms. In compound 1, the unit cell includes a disordered
solvent CH2Cl2 molecule (it can be also observed from the
1H-NMR), which could not be modeled as discrete atomic sites.
We employed PLATON/SQUEEZE to calculate the diffraction
contribution of the solvent CH2Cl2 molecule and, thereby, to
produce a set of solvent-free diffraction intensities. Crystallo-
graphic data for the compounds are summarized in Table 1.
Acknowledgements
9 (a) J. Nasielski, N. Hadei, G. Achonduh, E. A. B. Kantchev,
C. J. O’Brien, A. Lough and M. G. Organ, Chem.–Eur. J., 2010, 16,
10844–10853; (b) C. J. O’Brien, E. A. B. Kantchev, C. Valente,
N. Hadei, G. A. Chass, A. Lough, A. C. Hopkinson and M. G. Organ,
Chem.–Eur. J., 2006, 12, 4743–4748; (c) M. G. Organ, S. Avola,
I. Dubovyk, N. Hadei, E. A. B. Kantchev, C. J. O’Brien and C. Valente,
Chem.–Eur. J., 2006, 12, 4749–4755; (d) L. Zhu, T.-T. Gao and
L.-X. Shao, Tetrahedron, 2011, 67, 5150–5155; (e) G. D. Frey, J. Schütz,
E. Herdtweck and W. A. Herrmann, Organometallics, 2005, 24, 4416–
Financial supports from the National Natural Science Foundation
of China (Nos. 21172092, 20972057, and 21002039), the
Natural Science Foundation of Anhui (No. 090416223), and the
Key Project of Science and Technology of the Department of
Education, Anhui Province (No. ZD2010-9) are gratefully
acknowledged.
12036 | Dalton Trans., 2012, 41, 12031–12037
This journal is © The Royal Society of Chemistry 2012