4
Tetrahedron Letters
Table 3. Antioxidant activity of compounds against lipid peroxidation.
Imax
(%)
Concentration(µM)
IC50
(µM)
Compound
10
50
100
250
500
97.35 ± 3.57
99.0 ± 1.73
83.18 ± 18.41
91.17±9.18
87.02±20.4
80.52±9.88
100±0.0
63.25±5.75**
81.83±28.56
56.78±16.53*
60.84±34.10*
89.83±20.35
69.33±24.44
82.94±20.63
41.59±21.93*
65.79±15.33
58.44±26.65
33.58±12.68***
73.42±23.08
41.10±19.84**
48.17±15.67*
86.29±26.28
38.47±15.68**
53.82±23.63*
41.38±20.33*
61.61±20.91
42.26±23.82*
24.24±17.86***
-
70.6± 13.65
184.3± 190.1
79.0± 43.28
88.25 ± 20.02
291.6± 202.8
80.0± 25.0
116.2± 54.06
89.6± 66.11
107.5± 15.00
87.5± 45.96
74.76 ± 17.86
69.98 ± 9.23
70.04 ± 13.68
65.65 ± 13.39
69.26± 28.43
75.47 ± 3.43
85.49 ± 8.58
68.24 ± 20.30
66.75 ± 17.12
67.49 ± 22.79
6a
6b
6c
6d
6e
6f
6g
6h
6i
-
30.02±9.23*
29.96±13.68**
-
-
29.23±10.57**
-
35.92±34.39*
24.53±3.43***
-
-
14.51±8.58***
61.64±26.28*
63.93±18.3
69.85±21.2
31.76±20.30**
-
-
33.25±17.1**
-
35.31±19.95*
6j
Data are expressed as mean ± SD (n = 4) of % lipid peroxidation; IC50 = concentration (µM) to decrease 50% of lipid peroxidation; Imax = % maximal
inhibition; * denotes p< 0.05; **p< 0.01; ***p< 0.001 when compared to control sample by Student-Newman-Keuls test.
permitted the preparation of a wide range of compounds with a
4. Effect Effect of Selenoaziridines in FRAP
highly modular character. The use of Aluminium Oxide 90, for
the purification of the selenoaziridines, has shown to be crucial in
order to obtain the product. Moreover, to the best of our
knowledge, this is the first time that the antioxidant activity of
chalocogenoaziridines has been reported against a range of free
radicals.
FRAP assay is a SET (singlet electron transformer) method
which is based on the reduction capability of ferric ion (Fe3+) to
ferrous ion (Fe2+) of a test sample.16 Aziridine has the ability to
reduce the ferric ion at the concentration of 100 µM (see Table
4). Compound 6a has the reduce capability at the concentration
of 50 µM. The compounds 6b and 6e reduced the ferric ion at
concentrations of 50-100 µM. The compounds 6d and 6f have the
potential to reduce concentrations of 10-100 µM. Based in these
data, the addition of selenium had the ability to enhance the
reducing potential since the aziridine showed reduction of ferric
ion at the concentration of 100 uM (p <0.01) and the compounds
6d and 6f show a reducing potential in concentration of 10 uM (p
<0.01). All other compounds (Table 3, 6c, 6g, 6h, 6i and 6j) did
not have an effect in this assay. Thus, the best compounds for
reduce ferrous ion are the selenoaziridines 6d and 6f. This
activity may be due to the high electronegativity of the chlorine
attached to the aromatic ring in the compound 6d and the
increase of the size of the aromatic moiety in compound 6f.
Acknowledgments
We gratefully acknowledge to the São Paulo Research
Foundation - FAPESP (2013/06558-3), Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq), INCT-CMN,
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
(CAPES) and Fundação de Amparo à Pesquisa do Estado do Rio
Grande do Sul (FAPERGS).
References and notes
1.
2.
Sweeney, J. B.; Chem. Soc. Rev. 2002, 31, 247.
(a) Hu, X. E.; Tetrahedron 2004, 60, 2701; (b) Lu, P.;
Tetrahedron 2010, 66, 2549; (c) Stanković, S.; D’hooghe, M.;
Catak, S.; Eum, H.; Waroquier, M.; Van Speybroeck, V.; De
Kimpe N.; Ha, H.-J. Chem. Soc. Rev. 2012, 41, 643.
Table 4 - Ferric reducing-antioxidant power (FRAP) assay of
compounds
(a) Kasai M.; Kono, M. Synlett, 1992, 778; (b) Aziridines and
Epoxides in Organic Synthesis; Yudin, A. K., Ed.; Wiley-VCH:
Weinheim, Germany, 2006.
Concentration (µM)
Compound
Aziridine
10
50
100
4.
(a) Godoy, M.; Alberto, E. E.; Paixão, M. W.; Soares, L. A.;
Schneider P. H.; Braga, A. L. Tetrahedron 2010, 66, 1341; (b)
Braga, A. L.; Paixão, M. W.; Westermann, B.; Schneider P. H.;
Wessjohann, L. A. Synlett 2007, 917; (c) Rachwalski, M.;
Jarzynski, S.; Jasinski, M.; Lesniak, S. Tetrahedron: Asymmetry
2013, 24, 689; (d) Rachwalski, M. Tetrahedron Asymmetry 2014,
25, 219; (e) Wang, M.-C.; Liu, L.-T.; Zhang, J.-S.; Shi, Y.-Y.;
Wang, D.-K.; Tetrahedron Asymmetry 2004, 15, 3853.
0.106 ± 0.018
0.215 ± 0.011
0.396 ± 0.09**
0.451 ± 0.032
0.257 ± 0.06
0.315 ± 0.04**
0.158 ± 0.06
0.288 ± 0.02**
1.43 ± 0.32***
0.463 ± 0.14*
-
6a
6b
6d
6e
6f
0.759 ± 0.15***
1.258 ± 0.06***
1.144 ± 0.04***
5.
6.
(a) Pellissier, H.; Tetrahedron 2010, 66, 1509. (b) Degennaro, L.;
Trinchera P.; Luisi, R. Chem. Rev. 2014, 114, 7881.
0.773 ± 0.07***
0.819 ± 0.25***
0.772 ± 0.007***
(a) Mugesh, G; Singh, H.; Chem. Soc. Rev. 2000, 29, 347; (b)
Mugesh, G.; Du Mont, W. W.; Sies, H. Chem. Rev. 2001, 101,
2125; (c) Nogueira, C. W.; Zeni, G.; Rocha, J. B. T. Chem. Rev.
2004, 104, 6255; (d) Sarma, B. K.; Mugesh, G. Org. Biomol.
Chem. 2008, 6, 965; (e) Pavin, N. F.; Donato, F.; Cibin, F. W.;
Jesse, C. R.; Schneider, P. H.; de Salles, H. D.; Soares, L. A.;
Alves, D.; Savegnago. L. Eur. J. Pharm. 2011, 668, 169; (f) Del
Fabbro, L.; Filho, C. B.; Souza, L. C.; Savegnago, L.; Alves, D.;
Schneider, P. H.; de Salles, H. D.; Jesse. C. R. Brain Research
2012, 1475, 31; (g) Victoria, F. N.; Martinez, D. M.; Castro, M.;
Casaril, A. M.; Alves, D.; Lenardão, E. J.; Salles, H. D.;
Schneider, P. H.; Savegnago. L. Chem.-Biol. Inter. 2013, 205,
100.
1.315 ± 0.05***
*
Data are expressed as mean ± SD (n = 3) of absorbance at 593 nm. p< 0.05;
**p<0.01; ***p< 0.001 when compared with control sample by Student–
Newman-Keuls.
5. Conclusions
7.
8.
Wu, J. N. Chiamvimonvat, Adv. Drug Deliv.Rev. 2009, 61, 351.
(a) Gieselman, M. D.; Xieand, L.; van der Donk, W. A.; Org. Lett.
2001, 3, 1331.; (b) Cohen, R. J.; Fox, D. L.; Salvatore, R. N. J.
Org. Chem. 2004, 69, 4265; (c) Iwaoka, M.; Haraki, C.; Ooka, R.;
In summary, we have developed a new and efficient method
for the synthesis of chalcogenoaziridines. These compounds were
prepared via a concise and flexible route, in good yields, which