E
T. Lessing, T. J. J. Müller
Letter
Synlett
Bioorg. Chem. 2016, 65, 146. (h) Baltus, C. B.; Jorda, R.; Marot, C.;
Berka, K.; Bazgier, V.; Krystof, V.; Prie, G.; Viaud-Massuard, M. C.
Eur. J. Med. Chem. 2016, 108, 701.
(13) (a) Goerlich, J. R.; Schmutzler, R. Phosphorus, Sulfur Silicon Relat.
Elem. 1995, 102, 211. (b) Beller, M.; Hein, M.; Tewari, A.; Zapf, A.
Synthesis 2004, 935.
(6) For reviews, see for example: (a) Mérour, J.-Y.; Routier, S.;
Suzenet, F.; Joseph, B. Tetrahedron 2013, 69, 4767.
(b) Popowycz, F.; Routier, S.; Joseph, B.; Mérour, J.-Y. Tetrahe-
dron 2007, 63, 1031.
(7) For selected reviews on strategic reaction design by multicom-
ponent reactions, see for example: (a) Dömling, A.; Wang, W.;
Wang, K. Chem. Rev. 2012, 112, 3083. (b) Ruijter, E.; Scheffelaar,
R.; Orru, R. V. A. Angew. Chem. Int. Ed. 2011, 50, 6234. (c) Touré,
B. B.; Hall, D. G. Chem. Rev. 2009, 109, 4439. (d) Ganem, B. Acc.
Chem. Res. 2009, 42, 463. (e) D’Souza, D. M.; Müller, T. J. J. Chem.
Soc. Rev. 2007, 36, 1095. (f) Balme, G.; Bossharth, E.; Monteiro,
N. Eur. J. Org. Chem. 2003, 4101.
(14) Typical Procedure for the Synthesis of 1,5-Dimethyl-2-
phenyl-1H-pyrrolo[2,3-b]pyridine (4b): In a dry screw-cap
Schlenk tube with a magnetic stir bar were placed 2-amino-3-
bromo-5-methyl pyridine (1a; 93 mg, 0.50 mmol), Pd(PPh3)2Cl2
(9.0 mg, 13 μmol), and (1-Ad)2PBn·HBr (12 mg, 25 μmol) and
the vessel was evacuated. After flushing the vessel with nitro-
gen, anhydrous DMSO (1.0 mL), the corresponding phenyl acet-
ylene (2a; 61 mg, 0.60 mmol) and DBU (225 mg, 1.50 mmol)
were added and the reaction mixture was stirred at 100 °C
under nitrogen for 1 h until the bromide was completely con-
sumed (reaction monitored by TLC). After cooling to rt KOt-Bu
(253 mg, 2.25 mmol) and DMSO (0.50 mL) were added and the
mixture was stirred at 100 °C under nitrogen for 0.25 h. After
cooling to rt, methyliodide (3b; 142 mg, 1.00 mmol) was added
to the reaction mixture, which was stirred at rt for 5 min. Then,
deionized water or brine (20 mL) was added to the mixture. The
aqueous layer was extracted several times with ethyl acetate or
dichloromethane. The combined organic phases were dried
(anhydrous sodium sulfate) and, after filtration, the solvents
were removed in vacuo. The residue was adsorbed on silica and
purified by chromatography on silica gel (SNAP cartridge 100 g,
hexanes/ethyl acetate) with a Biotage SP-1 flash chromatogra-
phy purification system to give analytically pure 4b as a yellow
solid. Yield: 72 mg (65%); mp 65 °C. IR (ATR): 3119 (w), 3078
(w), 3055 (w), 3005 (w), 2980 (w), 2945 (w), 2916 (w), 1599
(w), 1566 (w), 1532 (w), 1485 (m), 1296 (m), 748 (s), 694
(8) Müller, T. J. J. In Multicomponent Reactions 1. General Discussion
and Reactions Involving a Carbonyl Compound as Electrophilic
Component, Science of Synthesis; Müller, T. J. J., Ed.; Georg
Thieme Verlag KG: Stuttgart, 2014, 5.
(9) For one-pot and multicomponent accesses to 7-azaindoles, see:
(a) Dongare, S. B.; Chavan, H. V.; Surwase, D. N.; Bhale, P. S.;
Mule, Y. B.; Bandgar, B. P. J. Chin. Chem. Soc. (Taipei) 2016, 63,
323. (b) Dongare, S. B.; Chavan, H. V.; Bhale, P. S.; Mule, Y. B.;
Kotmale, A. S.; Bandgar, B. P. Chin. Chem. Lett. 2016, 27, 99.
(c) Vilches-Herrera, M.; Knepper, I.; de Souza, N.; Villinger, A.;
Sosnovskikh, V. Y.; Iaroshenko, V. O. ACS Comb. Sci. 2012, 14,
434. (d) Suresh, R.; Muthusubramanian, S.; Senthilkumaran, R.;
Manickam, G. J. Org. Chem. 2012, 77, 1468. (e) Tasch, B. O. A.;
Merkul, E.; Müller, T. J. J. Eur. J. Org. Chem. 2011, 4532.
(f) Merkul, E.; Schäfer, E.; Müller, T. J. J. Org. Biomol. Chem. 2011,
9, 3139. (g) Merkul, E.; Klukas, F.; Dorsch, D.; Grädler, U.;
Greiner, H. E.; Müller, T. J. J. Org. Biomol. Chem. 2011, 9, 5129.
(h) Sharma, S. K.; Mandadapu, A. K.; Saifuddin, M.; Gupta, S.;
Agarwal, P. K.; Mandwal, A. K.; Gauniyal, H. M.; Kundu, B. Tetra-
hedron Lett. 2010, 51, 6022.
(m) cm–1 1H NMR (300 MHz, CDCl3): δ = 2.45 (s, 3 H), 3.86 (s,
.
3 H), 6.44 (s, 1 H), 7.42–7.52 (m, 5 H), 7.70–7.71 (m, 1 H), 8.19
(m, 1 H). 13C NMR (75 MHz, CDCl3): δ = 18.7 (CH3), 30.1 (CH3),
99.0 (CH), 120.7 (Cquat), 125.1 (Cquat), 128.3 (CH), 128.4 (CH),
128.7 (CH), 129.2 (CH), 132.6 (Cquat), 142.1 (Cquat), 143.5 (CH),
148.1 (Cquat). MS (EI, 70 eV): m/z (%) = 223 (15), 222 (100) [M]+,
221 (84), 220 (5), 205 (6), 152 (5), 145 (17) [M-C6H5]+, 111 (7),
110 (11). Anal. calcd. for C15H14N2 (222.3): C 81.05, H 6.35, N
12.60; Found: C 80.92, H 6.07, N 12.40.
(10) Lessing, T.; Sterzenbach, F.; Müller, T. J. J. Synlett 2015, 26, 1217.
(11) (a) Kaupmees, K.; Trummal, A.; Leito, I. Croat. Chem. Acta 2014,
87, 385. (b) Kaljurand, I.; Kütt, A.; Sooväli, L.; Rodima, T.;
Mäemets, V.; Leito, I.; Koppel, I. A. J. Org. Chem. 2005, 70, 1019.
(12) Li, J.-N.; Liu, L.; Fu, Y.; Guo, Q.-X. Tetrahedron 2006, 62, 4453.
(15) Fang, Y.-Q.; Yuen, J.; Lautens, M. J. Org. Chem. 2007, 72, 5152.
(16) Jinnin, M.; Ihn, H.; Tamaki, K. Mol. Pharmacol. 2006, 69, 597.
(17) Dubs, C.; Hamashima, Y.; Sasamoto, N.; Seidel, T. M.; Suzuki, S.;
Hashizume, D.; Sodeoka, M. J. Org. Chem. 2008, 73, 5859.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–E