AuCl
2
(Pic) catalysts, we obtained 3-chloro-4,5-dihydro-2H-
oxocin-6(3H)-one 6, an eight-membered ether, via two
consecutive ring openings of a starting cyclopropane ring. In
the presence of NXS (X = Br and I) and AuCl catalysts,
3
0
we obtained 5-halo-3-oxabicyclo[4.2.0]oct-4-en-6-ols 5 and 5
efficiently, via a single cyclopropane opening. Both reactions
gave one diastereomeric product.
Notes and references
1
(a) D. I. Schuster, G. Lem and N. A. Kaprinidis, Chem. Rev., 1993,
93, 3; (b) J. D. Winkler, C. M. Bowen and F. Liotta, Chem. Rev.,
Scheme 2 Control experiments and the use of chiral epoxide.
2
of 2b with 5% AuCl (Pic) and NCS (1.2 equiv.) in CH Cl led
1
995, 95, 2003; (c) J. Iriondo-Alberdi and M. F. Greaney, Eur. J. Org.
Chem., 2007, 4801; (d) N. Hoffman, Chem. Rev., 2008, 108, 1052.
For total synthesis of naturally occurring compounds bearing a
cyclobutane ring, see selected examples: (a) P. S. Baran,
A. L. Zografos and D. P. O’Malley, J. Am. Chem. Soc., 2004,
126, 3726; (b) V. B. Birman and X.-T. Jiang, Org. Lett., 2004, 6,
2
2
2
only to its recovery; good recovery yields were also obtained
for treatment of 2b with AuCl with NBS or NIS. We also
3
2
369; (c) P. S. Baran, K. Li, D. P. O’Malley and C. Mitsos, Angew.
Chem., 2006, 118, 255 (Angew. Chem., Int. Ed., 2006, 45, 249);
d) P. S. Baran and J. M. Richter, J. Am. Chem. Soc., 2005, 127,
5394; (e) S. E. Reisman, J. M. Ready, A. Hasuoka, C. J. Smith
and J. L. Wood, J. Am. Chem. Soc., 2006, 128, 1448.
prepared chiral epoxide 1m with 67% ee, but its gold-catalyzed
reaction with NCS gave the resulting product 6m with a
complete loss of chirality.
(
1
As alcohol 2b is not the intermediate for the generation of
0
3 For total synthesis of natural products Laurencin and Laurenyne
bearing an eight-membered ether ring, see: (a) M. T. Crimmins and
K. A. Emmitte, Org. Lett., 1999, 1, 2029; (b) J. W. Burton,
J. S. Clark, S. Derrer, T. C. Stork, J. G. Bendall and
A. B. Holmes, J. Am. Chem. Soc., 1997, 119, 7483; (c) M. Bratz,
W. H. Bullock, L. E. Overman and T. Takemoto, J. Am. Chem.
Soc., 1995, 117, 5958; (d) R. K. Boeckman Jr, J. Zhang and
M. P. Reeder, Org. Lett., 2002, 4, 2002; (e) L. E. Overman and
A. S. Thompson, J. Am. Chem. Soc., 1988, 110, 2248.
halogenated products 6b, 5b and 5b using epoxide 1a, we
propose a mechanism involving metal-containing 3-oxabicyclo-
[
4.2.0]oct-4-en-6-ol B via hydrolysis of the initial carbocation A.
In the presence of PPh PO and NCS, we believe that proto-
deauration of cation A to form alcohol 2b appears to be slow
3
due to the presence of PPh O such that the gold fragment of
3
intermediate B activates the proximate hydroxyl group toward
the attack of NCS. This process causes the opening of a
cyclobutanol ring to give an eight-membered ether 6b; the
proton released from the hydrolysis of cation A, in the form of
4
(a) R. H. Grubbs, Adv. Synth. Catal., 2007, 349, 27;
b) T. M. Trnka and R. H. Grubbs, Acc. Chem. Res., 2001, 34, 18.
(
5
For the synthesis of starting epoxide 1a, see: C.-Y. Yang, M.-S. Lin,
H.-H. Liao and R.-S. Liu, Chem.–Eur. J., 2010, 16, 2696 with its ESI.
+
+
9,10
PPh
We observed a change in the chemoselectivity for NBS and
3
PO-H , assists the liberation of Cl from NCS.
6 (a) N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457;
b) E. Negishi and L. Anastasia, Chem. Rev., 2003, 103, 1979.
For selected examples, see: (a) L. Ye and L. Zhang, Org. Lett.,
009, 11, 3646; (b) B. Crone and S. F. Kirsch, J. Org. Chem., 2007,
72, 5435; (c) A. Buzas and F. Gagosz, Org. Lett., 2006, 8, 515;
d) A. Buzas, F. Istrate and F. Gagosz, Org. Lett., 2006, 8, 1957;
(e) A. Buzas and F. Gagosz, Synlett, 2006, 17, 2727;
f) S. F. Kirsch, J. T. Binder, B. Crone, A. Duschek, T. T. Haug,
C. Liebert and H. Menz, Angew. Chem., Int. Ed., 2007, 46, 2310.
(
7
+
’’
+’’
NIS because soft ‘‘Br
and ‘‘I
have a high affinity
2
toward the gold fragment to produce a direct replacement
7
(
(
Scheme 3).
In summary, we observed distinct chemoselectivities for
1
1
(
the gold-catalyzed transformation of cis-1-epoxy-1-alkynyl-
cyclopropanes 1 into various halogenated products in the
presence of suitable Au(III) catalysts and N-halosuccinimide
8 Selected reviews for gold and platinum catalyses, see: (a) A. S. K.
Hashmi and M. Rudolph, Chem. Soc. Rev., 2008, 37, 1766;
(
1
1
b) D. J. Gorin, B. D. Sherry and F. D. Toste, Chem. Rev., 2008,
08, 3351; (c) N. T. Patil and Y. Yamamoto, Chem. Rev., 2008,
08, 3395; (d) A. Furstner and P. W. Davies, Angew. Chem., Int.
(
halo = chloro, bromo and iodo). In the presence of NCS and
¨
Ed., 2007, 46, 3410; (e) S. Md. Abu Sohel and R.-S. Liu, Chem.
Soc. Rev., 2009, 38, 2269.
(a) R. S. Coleman and E. B. Grant, J. Org. Chem., 1991, 56, 1357;
9
(
b) V. Paul, A. Sudalai, T. Daniel and K. V. Srinivasan, Tetra-
hedron Lett., 1994, 35, 7055; (c) G. A. Olah, Q. Wang, G. Sandford
and G. K. S. Prakash, J. Org. Chem., 1993, 58, 3194; (d) G. K. S.
Prakash, T. Mathew, D. Hoole, P. M. Esteves, Q. Wang, G. Rasul
and G. A. Olah, J. Am. Chem. Soc., 2004, 126, 15770.
1
0 F. Mo, J. M. Yan, D. Qiu, F. Li, Y. Zhang and J. Wang, Angew.
Chem., Int. Ed., 2010, 49, 2028 and references therein.
1 The two Au(I)-catalyzed halogenation reactions failed to work
with epoxide substrates bearing an alkyl-substituted alkyne.
Cycloaddition reactions described in Scheme 1 have similar
limitations.
1
Scheme 3 Proposed mechanisms for various haloniums.
This journal is c The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 1339–1341 1341