ACS Catalysis
Letter
an additive proceeded smoothly with 87% yield of the coupling
product (2a (also 1l), Table 3). Compared to the previously
the energetically demanding photoredox/Ni dual catalytic
C(sp3)−C(sp2) cross-coupling of α-amino acids/alkyltrifluor-
oborates with aryl halides. The concept of D−A fluorophores
can certainly be used to design other new metal-free
photoredox catalysts, and this work validates its wide utility
in visible-light-promoted organic synthesis.
Table 3. Photoredox/Ni Dual-Catalyzed Cross-Coupling of
Trifluoroborates and Aryl Bromides
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Materials, general procedures, synthesis, the cost
calculations for D−A fluorophores, physical measure-
ments, spectroscopic characterizations, CV diagrams,
NMR spectra, and HPLC measurements (PDF)
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
The authors thank the support from the University of
Nebraska-Lincoln.
■
REFERENCES
■
(1) (a) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527−
532. (b) Narayanam, J. M.; Stephenson, C. R. Chem. Soc. Rev. 2011,
40, 102−113. (c) Xuan, J.; Xiao, W. J. Angew. Chem., Int. Ed. 2012, 51,
6828−6838.
reported reaction conditions,20a our procedure is simplified
because it does not use highly air-sensitive Ni(COD)2 (COD =
1,5-cyclooctadiene). Using a blue LED (465 nm) as the light
source, an 86% yield was achieved (Table S5, entry 6). Other
D−A fluorophores also effectively promote this reaction and
give moderate to excellent yields (23% ∼ 91%) Table S6.
A range of structurally diverse aryl halides with various
functional groups, including tert-butyl 2b, methyl 2c, cyano 2d,
and formyl 2e, delivered the corresponding coupling products
in good to excellent yield (81−91%). It is noteworthy that
ortho-steric hindrance in 2c was tolerated with no apparent
decrease in yield. Additionally, the successful coupling between
3-bromo-9H-carbazole with benzylic trifluoroborate (2h, 92%)
demonstrated the compatibility of this catalytic system with
substrates containing active hydrogen functional groups.
Further, the electronic effect of the benzylic trifluoroborate
component is moderate considering that a slightly longer
reaction time (24 h) was required to couple with 3-bromo-9H-
carbazole (2j, 93%). Interestingly, propyl trifluoroborate can
also be used as the C(sp3) radical precursor (2k, 67% yield),
further manifesting the wider utility of 4CzIPN in direct
functionalization of C(sp3)−H bonds with aryl halides.
(2) Teply, F. Collect. Czech. Chem. Commun. 2011, 76, 859−917.
́
(3) (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. Chem. Rev.
2013, 113, 5322−5363. (b) Yoon, T. P. ACS Catal. 2013, 3, 895−902.
(c) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176. (d) Beatty,
J. W.; Stephenson, C. R. J. Am. Chem. Soc. 2014, 136, 10270−10273.
(e) Du, J.; Skubi, K. L.; Schultz, D. M.; Yoon, T. P. Science 2014, 344,
392−396. (f) Beatty, J. W.; Douglas, J. J.; Cole, K. P.; Stephenson, C.
R. Nat. Commun. 2015, 6, 7919. (g) Su, Y.; Straathof, N. J.; Hessel, V.;
Noel, T. Chem. - Eur. J. 2014, 20, 10562−10589.
̈
(4) (a) Zeitler, K.; Neumann, M. In Chemical Photocatalysis; Konig,
̈
B., Ed.; de Gruyter, Berlin, Germany: 2013. (b) Hopkinson, M. N.;
Sahoo, B.; Li, J. L.; Glorius, F. Chem. - Eur. J. 2014, 20, 3874−3886.
(5) (a) Paria, S.; Reiser, O. ChemCatChem 2014, 6, 2477−2483.
(b) Bagal, D. B.; Kachkovskyi, G.; Knorn, M.; Rawner, T.; Bhanage, B.
M.; Reiser, O. Angew. Chem., Int. Ed. 2015, 54, 6999−7002.
(6) Stevenson, S. M.; Shores, M. P.; Ferreira, E. M. Angew. Chem., Int.
Ed. 2015, 54, 6506−6510.
(7) Gualandi, A.; Marchini, M.; Mengozzi, L.; Natali, M.; Lucarini,
M.; Ceroni, P.; Cozzi, P. G. ACS Catal. 2015, 5, 5927−5931.
(8) (a) Miranda, M. A.; García, H. Chem. Rev. 1994, 94, 1063−1089.
(b) Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini, A. Chem. Rev. 2007,
107, 2725−2756. (c) Hoffmann, N. Chem. Rev. 2008, 108, 1052−
1103. (d) Marin, M. L.; Santos-Juanes, L.; Arques, A.; Amat, A. M.;
Miranda, M. A. Chem. Rev. 2012, 112, 1710−1750. (e) Fukuzumi, S.;
Ohkubo, K. Chem. Sci. 2013, 4, 561−574. (f) Ravelli, D.; Fagnoni, M.;
Albini, A. Chem. Soc. Rev. 2013, 42, 97−113. (g) Nicewicz, D. A.;
Nguyen, T. M. ACS Catal. 2014, 4, 355−360. (h) Talla, A.; Driessen,
In conclusion, we have demonstrated that rationally designed
donor−acceptor fluorophores can be used as highly efficient
visible-light photoredox catalysts to promote organic trans-
formations. Specifically, carbazolyl dicyanobenzene (CDCB) is
a versatile platform to build D−A fluorophores with adjustable
photoredox potentials by changing the number and position of
carbazolyl and cyano groups on the center benzene ring. Due to
their favorable photoredox potentials and excellent photo-
stability in DMF, 4CzIPN exhibit a remarkable activity toward
B.; Straathof, N. J. W.; Milroy, L.-G.; Brunsveld, L.; Hessel, V.; Noel,
̈
T. Adv. Synth. Catal. 2015, 357, 2180−2186.
(9) (a) Neumann, M.; Fuldner, S.; Konig, B.; Zeitler, K. Angew.
̈
Chem., Int. Ed. 2011, 50, 951−954. (b) Ravelli, D.; Fagnoni, M.
ChemCatChem 2012, 4, 169−171. (c) Pitre, S. P.; McTiernan, C. D.;
Ismaili, H.; Scaiano, J. C. J. Am. Chem. Soc. 2013, 135, 13286−13289.
(d) Hari, D. P.; Konig, B. Chem. Commun. 2014, 50, 6688−6699.
̈
876
ACS Catal. 2016, 6, 873−877