Page 7 of 9
J Po lue ran sael od fo Mn aot te rai ad l js u Cs ht emm ai rs gt ri yn sA
Journal Name
ARTICLE
nitrostyrolene with 100% selectivity (Fig. S22) was obtained 5. C. Dai, Y. Sun, G. Chen, A. C. Fisher and Z. J. Xu, Angew. Chem. Int.
DOI: 10.1039/D0TA06747D
when the solar-driven NO production reacted with styrene.
Ed., 2020, 59, 9418-9422.
Notably, no products were detected in the control experiment 6. P. Li, Z. Zhou, Q. Wang, M. Guo, S. Chen, J. Low, R. Long, W. Liu,
using Ar gas as the feed gas (Fig. 4 and Fig. S23). This further
demonstrated that the generated NO originated from N
P. Ding, Y. Wu and Y. Xiong, J. Am. Chem. Soc., 2020, DOI:
10.1021/jacs.0c05097.
2
photooxidation and it can be directly used to synthesize nitric 7. W. Qiu, X. Xie, J. Qiu, W. Fang, R. Liang, X. Ren, X. Ji, G. Cui, A. M.
acid and fine chemicals. Moreover, NO and the nitrate has also
been proved as the raw materials for ammonia synthesis.
Asiri, G. Cui, B. Tang and X. Sun, Nat. Commun., 2018, 9, 3485.
8. N. Gruber and J. N. Galloway, Nature, 2008, 451, 293-296.
4
5-48
9
1
1
1
. B. S. Patil, N. Cherkasov, J. Lang, A. O. Ibhadon, V. Hessel and Q.
Wang, Appl. Catal. B Environ., 2016, 194, 123-133.
0. X. Liu, Y. Jiao, Y. Zheng, M. Jaroniec and S. Z. Qiao, J. Am. Chem.
Soc., 2019, 141, 9664-9672.
1. H. Cheng, P. Cui, F. Wang, L. X. Ding and H. Wang, Angew. Chem.
Int. Ed., 2019, 58, 15541-15547.
4
. Conclusions
2 3
In summary, TiO /WO nanorods with Z-scheme heterojunction
were successfully synthesized and adopted as thermal-assisted
photocatalyst for solar-driven NO synthesis from air in a flow
2. L. Zhang, M. Cong, X. Ding, Y. Jin, F. Xu, Y. Wang, L. Chen and L.
Zhang, Angew. Chem. Int. Ed., 2020, 59, 10888-10893.
reactor. The as-obtained TiO
efficiently photo-oxidize N in air into NO with a yield rate of
.16 mmol g h at 300 °C and a quantum efficiency of 0.31 %
2 3
/WO heterostructures could
2
-1
-1
13. X. Zhu, S. Mou, Q. Peng, Q. Liu, Y. Luo, G. Chen, S. Gao and X. Sun,
0
1
5
J. Mater. Chem. A, 2020, 8, 1545-1556.
4. T. Lee and H. Bai, AIMS Environ. Sci., 2016, 3, 261-289.
5. J. A. Miller and C. T. Bowman, Prog. Energ. Combust., 1989, 15,
at 365 nm. N isotope labeling and blank experiments proved
NO originating from N
of lattice oxygen in N
1
1
2
oxidation. EPR revealed the critical role
activation. Combining time-resolved PL
2
2
87-338.
6. D. E. Canfield, A. N. Glazer and P. G. Falkowski, Science, 2010,
30, 192-196.
7. B. S. Patil, Q. Wang, V. Hessel and J. Lang, Catal. Today, 2015,
56, 49-66.
8. M. D. Fryzuk and S. A. Johnson, Coordin. Chem. Rev., 2000, 200,
79-409.
spectra and in situ XPS, DFT calculation revealed that the
electron transfer at the interface of Z-scheme TiO /WO
heterojunction could not only facilitate the photo-charges
separation but also promote the adsorption of N and the
formation of NO* intermediate, and thus enhanced the
reaction. Moreover, the external heating source could be
replaced by stronger incident light and the solar-driven
generated NO can serve as the distributed source for the direct
synthesis of nitric acid and fine chemical of β-nitrostyrolene,
indicating the promising application potential of this technique.
This work offers a new avenue for energy-efficient and green
synthesis of NO from the air.
1
1
1
1
2
3
3
2
2
3
9. P. Peng, C. Schiappacasse, N. Zhou, M. Addy, Y. Cheng, Y. Zhang,
K. Ding, Y. Wang, P. Chen and R. Ruan, ChemSusChem, 2019, 12,
3
702-3712.
0. J. Gong, C. Li and M. R. Wasielewski, Chem. Soc. Rev., 2019, 48,
862-1864.
2
2
1
1. H. Jia, A. Du, H. Zhang, J. Yang, R. Jiang, J. Wang and C.-y. Zhang,
J. Am. Chem. Soc., 2019, 141, 5083-5086.
Conflicts of interest
There are no conflicts to declare
22. X. Gao, L. An, D. Qu, W. Jiang, Y. Chai, S. Sun, X. Liu and Z. Sun,
Sci. Bull., 2019, 64, 918-925.
2
2
3. S. J. Yuan, J. J. Chen, Z. Q. Lin, W. W. Li, G. P. Sheng and H. Q. Yu,
Nat. Commun., 2013, 4, 2249.
4. Y. Liu, M. Cheng, Z. He, B. Gu, C. Xiao, T. Zhou, Z. Guo, J. Liu, H.
He, B. Ye, B. Pan and Y. Xie, Angew. Chem. Int. Ed., 2019, 58, 731-
Acknowledgements
This work was financially supported by the National Natural
Science Foundation of China (No. 21701122) and the Natural
Science Foundation of Tianjin City (17JCJQJC44700).
7
35.
2
2
5. A. J. Medford and M. C. Hatzell, ACS Catal., 2017, 7, 2624-2643.
6. Y. Wang, W. Zhou, R. Jia, Y. Yu and B. Zhang, Angew. Chem. Int.
Ed., 2020, 59, 5350-5354.
2
7. L. Shang, B. Tong, H. Yu, G. I. N. Waterhouse, C. Zhou, Y. Zhao, M.
Tahir, L. Z. Wu, C. H. Tung and T. Zhang, Adv. Energy Mater., 2016,
6, 1501241.
Notes and references
1
. J. G. Chen, R. M. Crooks, L. C. Seefeldt, K. L. Bren, R. M. Bullock,
M. Y. Darensbourg, P. L. Holland, B. Hoffman, M. J. Janik, A. K. 28. G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169-
Jones, M. G. Kanatzidis, P. King, K. M. Lancaster, S. V. Lymar, P.
11186.
Pfromm, W. F. Schneider and R. R. Schrock, Science, 2018, 360, 29. G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15-50.
eaar6611.
30. P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953-17979.
. X. Pei, D. Gidon, Y. J. Yang, Z. Xiong and D. B. Graves, Chem. Eng. 31. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996,
J., 2019, 362, 217-228.
77, 3865-3868.
. I. Katsounaros, M. C. Figueiredo, X. Chen, F. Calle-Vallejo and M. 32. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010,
T. M. Koper, ACS Catal., 2017, 7, 4660-4667.
132, 154104.
. L. Qiao, Y. Lu, B. Liu and H. H. Girault, J. Am. Chem. Soc., 2011, 33. S. M. Patil, S. P. Deshmukh, K. V. More, V. B. Shevale, S. B.
33, 19823-19831.
2
3
4
1
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins