Page 7 of 8
Organic & Biomolecular Chemistry
Please do not adjust margins
Journal Name
COMMUNICATION
1
C11H12F3NO4S (311.28): C 42.44, H 3.89, N 4.50%; found C
42.37, H 4.02, N 4.41%.
Chemistry of Fluorine; John Wiley &DOSoI:n10s,.10In39c/.C, 6HOoBb0o2k43e6nJ,
New Jersey, 2008, pp 365; Fluorine and Health. Molecular
Imaging, Biomedical Materials and Pharmaceuticals, (Eds.: A.
Tressaud, G. Haufe), Elsevier, Amsterdam, 2008, pp 553-778;
Fluorine in Medicinal Chemistry and Chemical Biology, (Ed. I.
Ojima), Wiley-Blackwell, 2009, pp 3-198; Fluorine in
Pharmaceutical and Medicinal Chemistry. From Biophysical
Aspects to Clinical Application, (Eds.: V. Gouverneur, K.
Müller,), Imperial College Press, London, 2012, pp 139-331.
For recent reviews and synthesis examples see: R. Smits, C. D.
Cadicamo, K. Burger and B. Koksch, Chem. Soc. Rev., 2008,
37, 1727; V. P. Kukhar, A. E. Sorochinsky and V. A.
5,5,5-Trifluoro-2-(4-methylphenylsulfonamido)pentanoic acid
17g was obtained by general procedure starting from rac-2-
amino-5,5,5-trifluoropentanoic acid 16g (171 mg, 1 mmol),
tosyl chloride (210 mg, 1.1 mmol) and NaOH (88 mg, 2.2
mmol). Yield: 234 mg (72%). Colourless solid, mp 137-139 °C.
1H NMR (400 MHz, DMSO-d6) δ 1.61–1.88 (m, 2H), 2.08–2.27
(m, 2H), 2.37 (s, 3H), 3.78–3.88 (m, 1H), 7.37 (d, J = 7.8 Hz, 2H),
7.87 (d, J = 7.8 Hz, 2H), 8.16 (br s), 12.27–13.34 (br s, 1H); 13C
NMR (128 MHz, DMSO-d6) δ 21.5, 25.2, 29.7 (q, J = 27.8 Hz),
54.8, 127.1, 127.8 (q, J = 235.0 Hz), 130.0, 138.9, 143.2, 172.5;
19F NMR (376 MHz, DMSO-d6) δ –64.55 (t, J = 11.5 Hz) ppm.
HRMS (ESI-MS) calcd for [M+Na+] C11H12F3NNaO4S+ 334.0331;
found 334.0341; anal calcd for: C12H14F3NO4S (325.30): C 44.31,
H 4.34, N 4.31%; found: C 44.19, H 4.28, N 4.50%.
2
Soloshonok, Future Med. Chem., 2009, 1, 793; Sorochinsky,
A. E. and V. A. Soloshonok, J. Fluorine Chem., 2010, 131, 127;
A. Tarui, K. Sato, M. Omote, I. Kumadaki and A. Ando, Adv.
Synth. Catal., 2010, 352, 2733; C. Czekelius and C. C.
Tzschucke, Synthesis, 2010, 543; X.-L. Qiu and F.-L. Qing, Eur.
J. Org. Chem., 2011, 3261; Y.-L. Liu, T.-D. Shi, F. Zhou, X.-L.
Zhao, X. Wang and J. Zhou Org. Lett., 2011, 13, 3826; K.
Mikami, S. Fustero, J. L. Sánchez-Roselló, M. Aceña, V. A.
Soloshonok and A. E. Sorochinsky, Synthesis, 2011, 3045; J. L.
Aceña, A. E. Sorochinsky and V. A. Soloshonok, Synthesis,
2012, 44, 1591; J. L. Aceña, A. E. Sorochinsky, H. Moriwaki, T.
Sato and V. A. Soloshonok, J. Fluorine Chem., 2013, 155, 21.
For some examples see: A. Nakazato, T. Kumagai, K.
Sakagami, R. Yoshikawa, Y. Suzuki, S. Chaki, H. Ito, T. Taguchi,
S. Nakanishi and S. Okuyama, J. Med. Chem., 2000, 43 (25),
4893; D. Alexeev, R. L. Baxter, D. J. Campopiano, O. Kerbarh,
L. Sawyer, N. Tomczyk, R. Watta and S. P. Webster, Org.
X-ray crystal structure of compound (+)-3
A
colourless needle-like specimen of C10H17ClF6N2O6,
3
dimensions 0.055 mm x 0.072 mm x 0.228 mm, was used for
the X-ray crystallographic analysis. The X-ray intensity data
were measured. A total of 923 frames were collected. The
total exposure time was 24.10 hours. The frames were
integrated with the Bruker SAINT software-package using a
wide-frame algorithm. The integration of the data using a
monoclinic unit cell yielded a total of 7433 reflections to a
maximum θ angle of 63.65° (0.86 Å resolution), of which 2417
were independent (average redundancy 3.075, completeness =
95.0%, Rint = 14.73%, Rsig = 13.43%) and 1807 (74.76%) were
greater than 2σ(F2). The final cell constants of a = 11.0208(8) Å,
b = 5.0952(4) Å, c = 14.7276(11) Å, β = 103.403(6)°, volume =
804.48(11) Å3, are based upon the refinement of the XYZ-
centroids of 2344 reflections above 20 σ(I) with 8.247° < 2θ <
136.3°. Data were corrected for absorption effects using the
multi-scan method (SADABS). The ratio of minimum to
maximum apparent transmission was 0.793. The calculated
minimum and maximum transmission coefficients (based on
crystal size) are 0.5420 and 0.8500. The structure was solved
and refined using the Bruker SHELXTL Software Package, using
the space group P21, with Z = 2 for the formula unit,
C10H17ClF6N2O6. The final anisotropic full-matrix least-squares
refinement on F2 with 248 variables converged at R1 = 9.18%,
for the observed data and wR2 = 16.90% for all data. The
goodness-of-fit was 1.191. The largest peak in the final
difference electron density synthesis was 0.466 e-/Å3 and the
largest hole was -0.548 e-/Å3 with an RMS deviation of 0.115 e-
/Å3. On the basis of the final model, the calculated density was
1.695 g/cm3 and F(000), 420 e-. Flack parameter: 0.12(4).
Biomol. Chem., 2006, 4, 1209; K. H. Mortell, D. J. Anderson, J.
J. Lynch, S. L. Nelson, K. Sarris, H. McDonald, R. Sabet, S.
Baker, P. Honore, C.-H. Lee, M. F. Jarvis and M.
Gopalakrishnan, Bioorg. Med. Chem. Lett., 2006, 16, 1138; N.
Gupta, H. Zhang and P. Liu, Pharmacol. Biochem. Behavior,
2012, 100, 464.
4
P. Laverman, O. C. Boerman, F. H. Corstens and W. J. Oyen,
Eur. J. Nucl. Med. Mol. Imag., 2002, 29, 681; J. McConathy,
W. Yu, N. Jarkas, W. Seo, D. M. Schuster and M. M.
Goodman, Med. Res. Rev., 2012, 32, 868; C. Huang and J.
McConathy, Curr. Topics Med. Chem., 2013, 13, 871; S.
Suzuki, K. Kaira, Y. Ohshima, N. S. Ishioka, M. Sohda, T.
Yokobori, T. Miyazaki, N. Oriuchi, H. Tominaga, Y. Kanai, N.
Tsukamoto, T. Asao, Y. Tsushima, T. Higuchi, T. Oyama and H.
Kuwano, Brit. J. Cancer, 2014, 110, 1985.
5
6
N. C. Yoder and K. Kumar, Chem. Soc. Rev., 2002, 31, 335; H.-
P. Chiu, Y. Suzuki, D. Gullickson, R. Ahmad , B. Kokona, R.
Fairman and R. P. Cheng J. Am. Chem. Soc., 2006, 128
,
15556; H. Meng and K. Kumar, J. Am. Chem. Soc., 2007, 129
(50), 15615; M. Salwiczek, E. K. Nyakatura, U. I. M. Gerling; S.
Ye and B. Koksch, Chem. Soc. Rev., 2012, 41, 2135.
For recent publications see: (a) E. K. Nyakatura, O. Reimann,
T. Vagt, M. Salwiczek and B. Koksch, RSC Adv., 2013, 3, 6319;
U. I. M. Gerling, M. Salwiczek, C. D. Cadicamo, H. Erdbrink, C.
Czekelius, S. L. Grage, P. Wadhwani, A. S. Ulrich, M.
Behrends, G. Haufe and B. Koksch, Chem. Sci., 2014,
S. Ye, B. Loll, A. A. Berger, U. Mulow, C. Alings, M. C. Wahl
and B. Koksch Chem. Sci., 2015, , 5246.
5, 819.
6
7
8
For synthesis see: H. Yasui; T. Yamamoto, E. Tokunaga and N.
Shibata, J. Fluorine Chem., 2011, 132, 186 and references
therein; A. E. Sorochinsky, H. Ueki, H. L. Aceña, T. K. Ellis, H.
Moriwaki, T. Sato and V. A. Soloshonok, J. Fluorine Chem.,
2013, 155, 21.
Notes and references
M. E. Houston Jr., L. Harvath and J. F. Honek, Bioorg. Med.
Chem. Lett., 1997, 7, 3007; H. Duewel, E. Daub, V. Robinson
and J. F. Honek, Biochemistry, 1997, 36, 3404; P. Cleve, V.
Robinson, H. S. Duewel and J. F. Honek, J. Am. Chem. Soc.,
1999, 121, 8475; H. S. Duewel, E. Daub, V. Robinson and J. F.
This work has been supported by the Deutsche
Forschungsgemeinschaft (Ha 2145/9-1; AOBJ: 560896). We also
thank Dr. S. Zozulya (Enamine Ltd, Kiev) for his support in
determination of LogD and pKa values.
This journal is © The Royal Society of Chemistry 20xx
Org. Biomol. Chem., 2016, 00, 1-3 | 7
Please do not adjust margins