C O M M U N I C A T I O N S
Table 1. Optimizations of Asymmetric Phenyl Addition of
AlPh3(THF) to 2-Chlorobenzaldehyde Catalyzed by the In
Situ-Formed 1/Ti(O-i-Pr)4 Systemsa
In summary, novel asymmetric aryl additions of AlAr3(THF) to
aldehydes catalyzed by the Ti(IV) catalyst of (R)-H8-BINOL are
reported. Important features demonstrated in this study include an
easy processing relative to previous studied systems, both easily
prepared simple and substituted arylaluminum reagents used to
afford chiral alcohols in excellent enantioselectivities, and the
catalytic system applying to the most diversified aldehydes to date.
Moreover, diarylmethanols in both R- and S-configurations can be
obtained. Most importantly, the catalytic system is extremely
efficient with the reactions completing within 10 min, and the
suppression of the background reaction is not required.
entry
1 (mol%)
time
yield (%)b
ee (%)c
1
2
3
4
5
6
7
10
12 h
100
73
98
86
43
96
95
93
10 min
10 min
5 min
1 min
10 min
10 min
10
10
10
5
92
90
88
90
86
2.5
a 2-Chlorobenzaldehyde/AlPh3(THF)/Ti(O-i-Pr)4 ) 0.5/0.6/0.625 mmol.
b Yields were based on 1H NMR spectra. c Enantioselectivities were
determined by HPLC.
Acknowledgment. Financial support under Grant Number NSC
94-2113-M-005-012 from the National Science Council of Taiwan
is appreciated.
Table 2. Asymmetric AlAr3(THF) Addition to Aldehydes Catalyzed
by the In Situ-Formed 1/Ti(O-i-Pr)4 Catalysta
Supporting Information Available: Synthesis of compounds and
HPLC analytical conditions of chiral products. This material is available
entry
RCHO
Ar
yield (%)b
ee (%)c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
2-ClC6H4CHO
3-ClC6H4CHO
4-ClC6H4CHO
2-MeC6H4CHO
3-MeC6H4CHO
4-MeC6H4CHO
2-(MeO)C6H4CHO
3-(MeO)C6H4CHO
4-(MeO)C6H4CHO
4-(CF3)C6H4CHO
1-naphthylaldehyde
2-naphthylaldehyde
n-BuCHO
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
93
90
92
92
96
95
96
94
96
94
90
92
90
89
70
89
95
91
93
96
88
80
87
90
52
92 (R)
94 (R)
95 (R)
96 (R)
94 (R)
95 (R)
95 (R)d
94 (R)
97 (R)
96 (R)
96 (R)
94 (R)
91 (S)
96 (S)
99 (S)
94 (R)
91 (S)d
92 (S)
95 (R)
97 (R)
94 (S)
90 (S)
93 (S)e
92 (S)
72 (S)
References
(1) Pu, L.; Yu, H.-B. Chem. ReV. 2001, 101, 757 and references cited therein.
(2) Bolm, C.; Hildebrand, J. P.; Mun˜iz, K.; Hermanns, N. Angew. Chem.,
Int. Ed. 2001, 40, 3284 and references cited therein.
(3) Pu, L. Tetrahedron 2003, 59, 9873 and references cited therein.
(4) Li, H.; Walsh, P. J. J. Am. Chem. Soc. 2005, 127, 8355.
(5) (a) Drutu, I.; Krygowski, E. S.; Wood, J. L. J. Org. Chem. 2001, 66,
7025. (b) Scheidt, K. A.; Bannister, T. D.; Tasaka, A.; Wendt, M. D.;
Savall, B. M.; Fegley, G. J.; Roush, W. R. J. Am. Chem. Soc. 2002, 124,
6981. (c) Roethle, P. A.; Trauner, D. Org. Lett. 2006, 8, 345. (d) Wu,
P.-Y.; Wu, H.-L.; Uang, B.-J. J. Org. Chem. 2006, 71, 833 and references
cited therein.
(6) Weber, B.; Seebach, D. Tetrahedron 1994, 50, 7473.
(7) (a) Dosa, P. I.; Ruble, J. C.; Fu, G. C. J. Org. Chem. 1997, 62, 444. (b)
Dosa, P. I.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 445.
(8) (a) Bolm, C.; Mun˜iz, K. Chem. Commun. 1999, 1295. (b) Huang, W.-S.;
Hu, Q.-S.; Pu, L. J. Org. Chem. 1999, 64, 7940. (c) Ko, D.-H.; Kim, K.
H.; Ha, D.-C. Org. Lett. 2002, 4, 3759.
(9) Huang, W.-S.; Pu, L. J. Org. Chem. 1999, 64, 4222.
(10) (a) Bolm, C.; Hermanns, N.; Hildebrand, J. O.; Mun˜iz, K. Angew. Chem.,
Int. Ed. 2000, 39, 3465. (b) Bolm, C.; Kesselgruber, M.; Hermanns, N.;
Hildebrand, J. P.; Raabe, G. Angew. Chem., Int. Ed. 2001, 40, 1488.
(11) Bolm, C.; Rudolph, J. J. Am. Chem. Soc. 2002, 124, 14850.
(12) (a) Ji, J.-X.; Wu, J.; Au-Yeung, T. T.-L.; Yip, C.-W.; Haynes, R. K.;
Chan, A. S. C. J. Org. Chem. 2005, 70, 1093. (b) Braga, A. L.; Lu¨dtke,
D. S.; Vargas, F.; Paixa˜o, M. W. Chem. Commun. 2005, 2512.
(13) Dahmen, S.; Lormann, M. Org. Lett. 2005, 7, 4597.
(14) Qin, Y. C.; Pu, L. Angew. Chem., Int. Ed. 2006, 45, 273.
(15) Kim, J. G.; Walsh, P. J. Angew. Chem., Int. Ed. 2006, 45, 4175.
(16) (a) Ooi, T.; Takahashi, M.; Maruoka, K. Angew. Chem., Int. Ed. 1998,
37, 835. (b) Ishikawa, T.; Ogawa, A.; Hirao, T. J. Am. Chem. Soc. 1998,
120, 5124. (c) Spino, C.; Beaulieu, C. Angew. Chem., Int. Ed. 2000, 39,
1930. (d) Raineir, J. D.; Cox, J. M. Org. Lett. 2000, 2, 2707. (e) Suzuki,
H.; Yamazaki, N.; Kibayashi, C. Tetrahedron Lett. 2001, 42, 3013. (f)
Haraguchi, K.; Kubota, Y.; Tanaka, H. J. Org. Chem. 2004, 69, 1831. (g)
Wang, B.; Bonin, M.; Micouin, L. Org. Lett. 2004, 6, 3481. (h) Uchiyama,
M.; Naka, H.; Matsumoto, Y.; Ohwada, T. J. Am. Chem. Soc. 2004, 126,
10526. (i) Kojima, K.; Kimura, M.; Tamaru, Y. Chem. Commun. 2005,
4717.
(17) Negishi, E. I.; Kondakov, D. Y. Chem. Soc. ReV. 1996, 25, 417.
(18) Eisch, J. J. In ComprehensiVe Organometallic Chemistry; Wilkinson, G.,
Stone, F. G. A., Abel, E. W., Eds.; Pergamon: New York, 1982; Vol. 1,
p 634.
(19) Biswas, K.; Prieto, O.; Goldsmith, P. J.; Woodward, S. Angew. Chem.,
Int. Ed. 2005, 44, 2232.
(20) Chan, A. S. C.; Zhang, F.-Y.; Yip, C.-W. J. Am. Chem. Soc. 1997, 119,
4080.
(21) Pagenkoph, B. L.; Carreira, E. M. Tetrahedron Lett. 1998, 39, 9593.
(22) d’Augustin, M.; Palais, L.; Alexakis, A. Angew. Chem., Int. Ed. 2005,
44, 1376.
(23) You, J.-S.; Hsieh, S.-H.; Gau, H.-M. Chem. Commun. 2001, 1546.
(24) Kwak, Y.-S.; Corey, E. J. Org. Lett. 2004, 6, 3385.
(25) Srini, V.; De Mel, J.; Oliver, J. P. Organometallics 1989, 8, 827.
(26) Waltz, K. M.; Carroll, P. J.; Walsh, P. J. Organometallics 2004, 23, 127.
(27) Wu, K.-H.; Gau, H.-M. Organometallics 2004, 23, 580.
(28) Trost, B. M.; Weiss, A. H.; Jacobi von Wangelin, A. J. Am. Chem. Soc.
2006, 128, 8.
(29) Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; de Meijere, A.,
Diederich, F., Eds.; Wiley-VCH: Weinheim, Germany, 2004.
(30) Hamon, D. P. G.; Massy-Westropp, R. A.; Newton, J. L. Tetrahedron
1995, 51, 12645.
i-PrCHO
t-BuCHO
2-furylaldehyde
(E)-PhCHdCHCHO
(E)-n-PrCHdCHCHO
PhCtCCHO
n-BuCtCCHO
C6H5CHO
C6H5CHO
C6H5CHO
C6H5CHO
C6H5CHO
p-tolyl
4-(MeO)C6H4
4-(TMS)C6H4
2-naphthyl
1-naphthyl
a Substrate/AlAr3(THF)/1/Ti(O-i-Pr)4 ) 0.5/0.6/0.05/0.625 mmol. b Iso-
lated yields. c Enantioselectivities were determined by HPLC using suitable
chiral column from Daicel. d Ti(O-i-Pr)4, 0.75 mmol. e The enantioselectivity
was determined after conversion the TMS product into the bromo product.
to afford corresponding alcohols as building blocks for further
reactions, and asymmetric alkynyl additions to R,â-unsaturated
aldehydes have been demonstrated in a recent paper by Trost and
co-workers.28 To our knowledge, only one example of a phenyl
addition to the acetylenyl aldehyde, TIPSCtCCHO, was reported
to afford the propargyl alcohol in 85% ee.8c Our system also applies
to phenylacetylenyl and n-butylacetylenyl aldehydes to afford
propargyl alcohols in 95 and 97% ee (entries 19 and 20). Entries
21-24 demonstrate additions of substituted aryl to afford desired
products with excellent stereoselectivities from 90 to 94% ee. The
additions of substituted aryl to benzaldehyde afforded products in
reverse S-configurations in contrast to the R-products obtained by
the phenyl addition to the substituted benzaldehydes. However, the
addition by the more hindered 1-naphthyl to benzaldehyde gave
the product in only 52% yield with 72% ee (entry 25). In entry 23,
the resulted phenyl 4-(trimethylsilyl)phenyl methanol is an important
product since the TMS substituent can be easily converted into other
functional groups such as a bromo, an iodo, or a boron dichloride
substituent for further applications.29 In this study, the product was
demonstrated to transform into the phenyl 4-bromophenyl metha-
nol.30
JA062080Y
9
J. AM. CHEM. SOC. VOL. 128, NO. 46, 2006 14809