ZHANG ET AL.
3
by flash chromatography on silica gel (petroleum ether–ethyl
acetate, 10:1) to afford the corresponding products.
J = 16.0 Hz, 1H), 4.28 (q, J = 7.1 Hz, 2H), 2.39 (s, 3H),
1.36 (t, J = 7.1 Hz, 3H).
1
(
E)‐Ethyl 3‐(4‐acetylphenyl)acrylate (l).
H
NMR
(
500 MHz, CDCl , δ, ppm): 7.97–7.95 (m, 2H), 7.69 (d,
3
J = 16.0 Hz, 1H), 7.61–7.59 (m, 2H), 6.52 (d, J = 16.0 Hz,
H), 4.28 (q, J = 7.1 Hz, 2H), 2.61 (s, 3H), 1.34 (t,
J = 7.1 Hz, 3H).
2
.4 | Analytical data for products
1
1
(
E)‐Methyl cinnamate (a). H NMR (500 MHz, CDCl , δ,
3
1
ppm): 7.72 (d, J = 16.0 Hz, 1H), 7.61–7.48 (m, 2H), 7.41–
.39 (m, 3H), 6.46 (d, J = 16.0 Hz, 1H), 3.83 (s, 3H).
(E)‐Ethyl 3‐(4‐formylphenyl)acrylate (m). H NMR
7
(500 MHz, CDCl , δ, ppm): 9.99 (s, 1H), 7.86 (d,
3
1
(
E)‐Ethyl cinnamate (b). H NMR (500 MHz, CDCl , δ,
J = 8.2 Hz, 2H), 7.68–7.63 (m, 3H), 6.51 (d, J = 16.0 Hz,
1H), 4.25 (q, J = 7.1 Hz, 2H), 1.31 (t, J = 7.1 Hz, 3H).
3
ppm): 7.71 (d, J = 16.0 Hz, 1H), 7.55–7.53 (m, 2H), 7.41–
.38 (m, 3H), 6.46 (d, J = 16.0 Hz, 1H), 4.29 (q,
J = 7.1 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H).
1
7
(E)‐Ethyl 3‐(3‐formylphenyl)acrylate (n). H NMR
(500 MHz, CDCl , δ, ppm): 10.01 (s, 1H), 7.99 (s, 1H),
3
1
(
E)‐Butyl cinnamate (c). H NMR (500 MHz, CDCl , δ,
7.86 (d, J = 7.6 Hz, 1H), 7.74 (d, J = 7.7 Hz, 1H), 7.69 (d,
J = 16.1 Hz, 1H), 7.54 (t, J = 7.7 Hz, 1H), 6.50 (d,
J = 16.0 Hz, 1H), 4.25 (q, J = 7.1 Hz, 2H), 1.32 (t,
3
ppm): 7.71 (d, J = 16.0 Hz, 1H), 7.56–7.53 (m, 2H), 7.41–
.38 (m, 3H), 6.47 (d, J = 16.0 Hz, 1H), 4.23 (t,
J = 6.7 Hz, 2H), 1.71–1.66 (m, 2H), 1.48–1.44 (m, 2H),
7
J = 7.1 Hz, 3H).
1
0.99 (t, J = 7.4 Hz, 3H).
(E)‐Ethyl 3‐(4‐(trifluoromethyl)phenyl)acrylate (o).
H
1
(
E)‐Stilbene (d). H NMR (500 MHz, CDCl , δ, ppm):
NMR (500 MHz, CDCl , δ, ppm): 7.68 (d, J = 16.0 Hz,
3
3
7
2
.54 (d, J = 7.4 Hz, 4H), 7.38 (t, J = 7.7 Hz, 4H), 7.28 (m,
1H), 7.64–7.60 (m, 4H), 6.50 (d, J = 16.0 Hz, 1H), 4.28 (q,
H), 7.14 (s, 2H).
J = 7.1 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H).
1
1
(
E)‐Butyl 3‐(4‐bromophenyl)acrylate (e). H NMR
(E)‐Ethyl 3‐(4‐nitrophenyl)acrylate (p).
H
NMR
(500 MHz, CDCl , δ, ppm): 7.61 (d, J = 16.0 Hz, 1H),
(500 MHz, CDCl , δ, ppm): 8.25 (d, J = 8.6 Hz, 2H),
3
3
7
.52 (d, J = 8.3 Hz, 2H), 7.39 (d, J = 8.4 Hz, 2H), 6.43 (d,
J = 16.0 Hz, 1H), 4.21 (t, J = 6.7 Hz, 2H), 1.71–1.65 (m,
H), 1.44–1.40 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H).
7.73–7.67 (m, 3H), 6.56 (d, J = 16.0 Hz, 1H), 4.30 (q,
J = 7.1 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H).
1
2
(E)‐Ethyl 3‐(4‐cyanophenyl)acrylate (q).
H NMR
1
(
E)‐Butyl 3‐(4‐nitrophenyl)acrylate (f).
H
NMR
(500 MHz, CDCl , δ, ppm): 7.69–7.65 (m, 3H), 7.61 (d,
3
(500 MHz, CDCl , δ, ppm): 8.26–8.24 (m, 2H), 7.69–7.67
J = 8.3 Hz, 2H), 6.52 (d, J = 16.0 Hz, 1H), 4.29 (q,
3
(m, 3H), 6.57 (d, J = 16.0 Hz, 1H), 4.25 (t, J = 6.7 Hz,
J = 7.1 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H).
2
H), 1.74–1.68 (m, 2H), 1.47–1.43 (m, 2H), 0.98 (t,
J = 7.4 Hz, 3H).
E)‐Butyl 3‐(4‐hydroxyphenyl)acrylate (g). H NMR
500 MHz, CDCl , δ, ppm): 7.63 (d, J = 16.0 Hz, 1H),
1
(
3
| RESULTS AND DISCUSSION
(
3
7
1
2
.45–7.42 (m, 2H), 6.86–6.83 (m, 2H), 6.31 (d, J = 16.0 Hz,
H), 5.69 (s, 1H), 4.21 (t, J = 6.7 Hz, 2H), 1.71–1.67 (m,
The Pd(OAc) @MNP catalyst was prepared via the proce-
2
dure shown in Scheme 1. Firstly, the precursor silane‐func-
tionalized iminopyridine ligand 2 was synthesized by
nucleophilic substitution of iminopyridine ligand 1 and (3‐
chloropropyl)triethoxysilane under basic conditions. Sec-
ondly, a condensation reaction of SiO @Fe O with precur-
H), 1.48–1.43 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H).
1
(
E)‐Butyl 3‐(4‐aminophenyl)acrylate (h). H NMR
(500 MHz, CDCl , δ, ppm): 7.59 (d, J = 15.9 Hz, 1H), 7.34
3
(d, J = 8.5 Hz, 2H), 6.66–6.63 (m, 2H), 6.24 (d, J = 15.9 Hz,
2
3 4
1
H), 4.18 (t, J = 6.7 Hz, 2H), 3.94 (s, 2H), 1.70–1.64 (m, 2H),
sor 2 afforded iminopyridine ligand‐functionalized MNPs
(3). Ultimately, the obtained 3 was reacted with palladium
acetate in acetone at room temperature for 24 h to afford
1.43–1.40 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H).
1
(
E)‐Butyl 3‐(4‐methoxyphenyl)acrylate (i). H NMR
(
500 MHz, CDCl , δ, ppm): 7.63 (d, J = 16.0 Hz, 1H),
the target catalyst, Pd(OAc) @MNP.
3
2
7
1
2
.46–7.44 (m, 2H), 6.89–6.87 (m, 2H), 6.30 (d, J = 16.0 Hz,
H), 4.18 (t, J = 6.7 Hz, 2H), 3.80 (s, 3H), 1.68–1.64 (m,
In order to confirm the successful functionalization of
MNPs, IR spectroscopy was employed to allow a detailed
investigation of SiO @Fe O , precursor 2 and functionalized
H), 1.44–1.39 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H).
2
3 4
1
(
E)‐Ethyl 3‐(2‐methoxyphenyl)acrylate (j). H NMR
MNPs 3 (Figure 1). The Si─O─Si and Fe─O vibrations of
(
7
500 MHz, CDCl , δ, ppm): 8.00 (d, J = 16.2 Hz, 1H),
.51 (dd, J = 7.6, 1.2 Hz, 1H), 7.36–7.32 (m, 1H), 6.96 (t,
SiO @Fe O can be obviously observed at 1090.8 and
3
2
3
−
4
1
578.6 cm , respectively. The IR spectrum of precursor 2
−1
J = 7.5 Hz, 1H), 6.91 (d, J = 8.3 Hz, 1H), 6.53 (d,
J = 16.2 Hz, 1H), 4.27 (q, J = 7.1 Hz, 2H), 3.88 (s, 3H),
1
shows typical bands at around 1589 cm (C═N vibration),
−
1
1497 cm (C═C vibration of aryl ring), 2926 and 2879 cm
−1
.34 (t, J = 7.1 Hz, 3H).
(alkyl chain stretching vibrations). While in the spectrum
1
(
E)‐Ethyl 3‐p‐tolylacrylate (k). H NMR (500 MHz,
of functionalized MNPs 3, these characteristic peaks are at
similar wavenumbers, with a slight offset due to the interac-
tion with the support. Nevertheless, none of these significant
CDCl , δ, ppm): 7.68 (d, J = 16.0 Hz, 1H), 7.44 (d,
J = 8.1 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 6.41 (d,
3