Chemistry Letters Vol.34, No.1 (2005)
99
3+
Fe
This work was supported by 973 Program of the Ministry of
Science and Technology (No. 2002CB713808) as well as the
Teaching and Research Award Program for Outstanding Young
Teachers in Higher Education Institutions of MOE, P. R. C.
200
150
100
References and Notes
1
G. W. Gokel, W. M. Leevy, and M. E. Weber, Chem. Rev.,
04, 2723 (2004).
1
2
+
2+
2+
2+
2+
2+
2
a) X. F. Guo, X. H. Qian, and L. H. Jia, J. Am. Chem. Soc.,
126, 2272 (2004). b) Y. J. Zheng, X. H. Cao, J. Orbulescu,
V. Konka, F. M. Andreopoulos, S. M. Pham, and M.
Leblanc, Anal. Chem., 75, 1706 (2003). c) T. Gunnlaugsson,
T. C. Lee, and R. Parkesh, Org. Lett., 5, 4065 (2003). d) S. Y.
Moon, N. R. Cha, Y. H. Kim, and S. K. Chang, J. Org.
Chem., 69, 181 (2004).
(
Co , Ni , Mn , Zn , Pb , Hg
)
5
0
2+
2+
(
Mg , Ca
)
2
+
Cu
+
+
+
(
Li , Na , K )
1
0
4
00
500
Wavelength (nm)
ꢃ5
Figure 1. Fluorescence spectra of free 1 (1 ꢂ 10 M) and 1 in
3
4
H. He, M. A. Mortellaro, M. J. P. Leiner, R. J. Fraatz, and
J. K. Tusa, J. Am. Chem. Soc., 125, 1468 (2003).
buffered HEPES solution (0.1 M, pH 7.4) in the presence of dif-
ferent metal ions (1 ꢂ 10 M) (ꢁex ¼ 336 nm).
ꢃ5
a) G. K. Walkup and S. C. Burdette, J. Am. Chem. Soc., 122,
5644 (2000). b) S. C. Burdette, G. K.Walkup, B. Spingler,
R. Y. Tsien, and S. J. Lippard, J. Am. Chem. Soc., 123,
7831 (2001). c) S. Maruyama, K. Kikuchi, T. Hirano, Y.
Urano, and T. Nagano, J. Am. Chem. Soc., 124, 10650
(2002). d) Y. Suzuki, H. Komatsu, T. Ikeda, N. Saito, S.
Araki, D. Citterio, H. Hisamoto, Y. Kitamura, T. Kubota,
J. Nakagawa, K. Oka, and K. Suzuki, Anal. Chem., 74,
1423 (2002).
a) L. Fabbrizzi, N. Marcotte, F. Stomeo, and A. Taglietti,
Angew. Chem., Int. Ed., 41, 3811 (2002). b) M. S. Han and
D. H. Kim, Angew. Chem., Int. Ed., 41, 3809 (2002).
a) V. Amendola, L. Fabbrizzi, C. Mangano, P. Pallavicini, A.
Poggi, and A. Taglietti, Coord. Chem. Rev., 219, 821 (2001).
b) C. T. Chen and W. P. Huang, J. Am. Chem. Soc., 124,
6246 (2002).
the decrease in the distance between two crown ethers when fer-
ric ion is bound. These results demonstrated that the selectivity
of chemosensor 1 for Fe 3 is very high.
We also tried to find the possibility of practical applicability
of this chemosensor in the analysis of biological samples by
studying the Fe -selective response of the fluorescence spectra
in the presence of background metal ions of physiologically im-
þ
3
þ
þ
þ
2þ
2þ
portant Na (0.135 M), K (0.01 M), Mg (0.001 M) and Ca
ions (0.001 M). The chemosensor 1 showed a selective response
5
6
3þ
toward Fe ions and was found to have an almost identical re-
sponse and detection limit comparable with the results obtained
in the absence of other background metal ions.
3
þ
The stoichiometry of the 1ꢄFe complex system was deter-
mined by the changes in fluorescence emission spectra of 1 in the
presence of varying concentrations of ferric ions at 412 nm. The
3
þ
results indicated that the complex has 1:1 (host 1: guest Fe
ion) stoichiometry.
The association constant Ka for the interaction of 1 with
Fe3 ions was estimated by the nonlinear curve fitting procedure
7
8
9
B. L. Vallee and D. S. Auld, ‘‘In Methods in Protein
Sequence Analysis,’’ ed. by H. Jornvall, J. O. Hoog, and
A. M. Gustavsson, Birkhauser, Basel (1991).
þ
a) J.-M. Liu, Q.-Y. Zheng, J.-L. Yang, C.-F. Chen, and Z.-T.
Huang, Tetrahedron Lett., 43, 9209 (2002). b) C. Yang and
T. S. Lee, Mol. Cryst. Liq. Cryst., 349, 283 (2000).
a) P. Kele, J. Orbulescu, T. L. Calhoun, R. E. Gawley, and
R. M. Leblanc, Tetrahedron Lett., 43, 4413 (2002). b) H.
Takakusa, K. Kikuchi, Y. Urano, S. Sakamoto, K.
Yamaguchi, and T. Nagano, J. Am. Chem. Soc., 124, 1653
(2002). c) S. Mizukami, T. Nagano, Y. Urano, A. Odani,
and K. Kikuchi, J. Am. Chem. Soc., 124, 3920 (2002).
of the fluorescence titration data. The Ka values of the 1:1 com-
2þ
3
þ
plex formation for 1ꢄFe and 1ꢄCu system were found to be
5
3
ꢃ1
1
:5 ꢂ 10 and 2:4 ꢂ 10 M , respectively.
To explore further the utility of 1 as an selective fluores-
cence chemosensor for Fe , the competition experiments were
3þ
3
þ
ꢃ5
conducted in the presence of Fe at 1 ꢂ 10 M mixed with
2þ
2þ
2þ
2þ
2þ
2þ
ꢃ5
Cu , Zn , Co , Ni , Hg , and Pb at 5 ꢂ 10 M as well
as the mixture of the metal ions in buffered HEPES solution
(
0.1 M, pH 7.4), respectively; no significant variation in its fluo-
10 R. L. Atkins and D. E. Bliss, J. Org. Chem., 43, 1975 (1978).
ꢅ
1
rescence intensity was found by comparison with that without
the other metal ions besides Fe3 . Moreover, no obvious inter-
ference was observed in its fluorescence while performing the ti-
11 Compound 1: mp>300 C; H NMR (DMSO-d6, 500 MHz):
ꢀ 2.78 (t, J ¼ 5:28 Hz ,8H), 3.51–3.57 (m, 40H), 3.61 (s,
2H), 3.89 (s, 2H), 6.50 (s, 1H), 7.58 (dd , J ¼ 2:18 Hz,
1H), 7.88 (s, J ¼ 2:18 Hz, 1H), 7.89 (s, J ¼ 2:18 Hz, 1H),
þ
3
þ
trations with Fe in the physiological important metal ions. The
3
þ
13
above results implied that its selectivity for Fe was remarkable
in physiological conditions.
In conclusion, we have designed and synthesized a new flu-
10.16 (s, 1H); C NMR (DMSO-d6): ꢀ 54.7, 56.2, 59.8,
66.7, 69.7, 70.1, 70.6, 70.9, 106.3 112.4, 114.7, 116.2
126.6, 142.2, 154.2, 155.1, 161.2, 171.7; HRMS-ESI
orescent chemosensor 1, which can detect Fe3 with an excellent
þ
(m=z): Calcd for C36H57N3O13Na ([M + Na] ) 762.3789,
Found 762.3777.
þ
selectivity and molecular sensitivity at physiological conditions.
Published on the web (Advance View) December 18, 2004; DOI 10.1246/cl.2005.98