6
892
G. H. Harris, A. E. Graham / Tetrahedron Letters 51 (2010) 6890–6892
Niizuma, S.; Matsuda, A. J. J. Org. Chem. 1998, 63, 4489–4493; (d) Barrett, A. G.
c
-ketocrotonate products. On carrying out this oxidation-Wittig
M.; Hamprecht, D.; Ohkubo, M. J. Org. Chem. 1997, 62, 9376–9378; (e)
Chandrasekhar, S.; Reddy, M. V. Tetrahedron 2000, 56, 6339–6344; (f)
MacCoss, R. N.; Balskus, E. P.; Ley, S. V. Tetrahedron Lett. 2003, 44, 7779–
7781; (g) Bagley, M. C.; Hughes, D. D.; Sabo, H. M.; Taylor, P. H.; Xiong, X. Synlett
olefination sequence in the presence of 2,3-dimethyl-1,3-butadi-
ene, a novel multicomponent reaction protocol can be achieved
in which the
Diels–Alder reaction giving cycloadducts in high yield. The simplic-
ity and convenience of this MCR protocol, and its efficiency in cre-
ating skeletal and stereochemical complexity in a single operation,
provides ready access to functionalised cyclic building blocks that
can be elaborated into complex structural motifs found in a range
of natural products.
c-ketocrotonates, once formed, undergo efficient
2003, 1443–1446; (h) Shet, J.; Desai, V.; Tilve, S. Synthesis 2004, 1859–1863.
7
.
.
(a) Fieser, L. F.; Fieser, M. J. Am. Chem. Soc. 1935, 57, 1679–1681; (b) Holmes, H.
L.; Husband, R. M.; Lee, C. C.; Kawulka, P. J. Am. Chem. Soc. 1948, 70, 141–142;
(c) Kinsman, A. C.; Kerr, M. A. Org. Lett. 2000, 2, 3517–3520.
(a) Jankowski, P.; Marczak, S.; Wicha, J. Tetrahedron 1998, 54, 12071–12150; (b)
Lee, J. H.; Kim, W. H.; Danishefsky, S. J. Tetrahedron Lett. 2009, 50, 5482–5484;
8
(
c) Knölker, H.-J.; Reddy, K. R. Chem. Rev. 2002, 102, 4303–4428.
9. Ireland, R. E.; Norbeck, D. W. J. Org. Chem. 1985, 50, 2198–2200.
10. Runcie, K. A.; Taylor, R. J. K. Chem. Commun. 2002, 974–975.
11. (a) Phillips, D. J.; Pillinger, K. S.; Li, W.; Taylor, A. E.; Graham, A. E. Chem.
Commun. 2006, 2280–2282; (b) Phillips, D. J.; Graham, A. E. Synlett 2008, 649–
Acknowledgements
652; (c) Smith, B. M.; Graham, A. E. Tetrahedron Lett. 2006, 47, 9317–9319; (d)
Smith, B. M.; Graham, A. E. Tetrahedron Lett. 2007, 48, 4891–4894; (e) Bagley,
M. C.; Lin, V.; Phillips, D. J.; Graham, A. E. Tetrahedron Lett. 2009, 50, 6823–
The authors thank EPSRC National Mass Spectrometry Service,
Swansea University and the Nuffield Foundation for funding.
6825; (f) Phillips, D. J.; Graham, A. E. Synlett 2010, 769–773.
1
2. Typical procedure for the tandem oxidation/Wittig reaction of hydroxyacetone 3
using silica-supported PCC/NaOAc: Hydroxyacetone (143 mg, 1.93 mmol) was
added to a solution of silica-supported PCC (830 mg, 3.85 mmol, ground with
References and notes
2
wt equiv of silica), NaOAc (316 mg, 3.85 mmol) and (carbethoxymethylene)-
triphenylphosphorane 1a (1.68 g, 4.8 mmol) in CHCl (15 mL) and stirred at
reflux for 4 h. The reaction mixture was then cooled to room temperature and
filtered through Celite pad which was washed with additional CHCl
2 Â 10 mL). The combined solvents were then removed to give a yellow oil
which was purified by column chromatography (hexane?5% EtOAc/hexane) to
1
.
(a) Dömling, A. Chem. Rev. 2006, 106, 17–89; (b)Multicomponent Reactions; Zhu,
J., Bienaymé, H., Eds.; Wiley: Weinheim, 2005; (c) Taylor, R. J. K.; Reid, M.; Foot,
J.; Raw, S. A. Acc. Chem. Res. 2005, 38, 851–869; (d) Tietze, L. F. Chem. Rev. 1996,
3
a
3
9
6, 115–136; (e) Ramon, D. J.; Yus, M. Angew. Chem., Int. Ed. 2005, 44, 1602–
634; (f) Denmark, S. E.; Thorarensen, A. Chem. Rev. 1996, 96, 137–165; (g)
Wasilke, J. C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C. Chem. Rev. 2005, 105, 1001–
020.
(
1
15
give (E)-ethyl 4-oxo-2-pentenoate 6a as a yellow oil (206 mg, 75%);
m
max (film)/
1
cm , 2985, 1721, 1701, 1290, 1182, 978, 869, 587; 1H NMR (400 MHz; CDCl
À1
3
)
2
.
.
(a) Isambert, N.; Lavilla, R. Chem. Eur. J. 2008, 14, 8444–8454; (b) Zhu, J. Eur. J.
Org. Chem. 2003, 1133–1144; (c) Hume, C.; Gore, V. Curr. Med. Chem. 2003, 10,
d = 6.95 (1H, d, J = 16 Hz), 6.55 (1H, d, J = 16 Hz), 4.22 (2H, q, J = 7 Hz), 2.30 (3H, s),
1
6
.25 (3H, t, J = 7 Hz). 13C NMR (100 MHz, CDCl
) d = 198.0, 165.9, 140.3, 132.0,
7 11 3
) calcd for C H O
3
5
1–80; (d) D’Souza, D. M.; Müller, T. J. J. Chem. Soc. Rev 2007, 36, 1095–1108;
e) Touré, B. B.; Hall, D. G. Chem. Rev. 2009, 109, 4439–4486.
(a) Fayol, A.; Zhu, J. Org. Lett. 2004, 6, 115–118; (b) Fayol, A.; Zhu, J. Tetrahedron
005, 61, 11511–11519; (c) Bonne, D.; Dekhane, M.; Zhu, J. Angew. Chem., Int.
Ed. 2007, 119, 2537–2540; (d) Lee, D.; Sello, J. K.; Schreiber, S. L. Org. Lett. 2000,
, 709–712; (e) Andreana, P. R.; Liu, C. C.; Schreiber, S. L. Org. Lett. 2004, 6,
231–4233.
(a) Zhu, W.; Mena, M.; Jnoff, E.; Na, S.; Pasau, P.; Ghosez, L. Angew. Chem., Int. Ed.
+
1.8, 28.5, 14.5; MS (ES, NH
3
) m/z 143 (M+H) , HRMS (ES, NH
3
(
+
+
+
(
M+H) , 143.0703 (M+H) , found (M+H) 143.0704.
3. The possibility that the Diels–Alder cycloaddition is catalysed by the presence
of silica or a metal species derived from PCC or MnO cannot at this time be
3
1
2
2
ruled out. Studies to clarify this point and to assess the potential of Lewis acid
catalysis of the cycloaddition step are ongoing. For studies on the beneficial
role of silica on Diels–Alder reactions, see: (a) Cunningham, I. D.; Crawley, V. J.
Mol. Catal. A 2009, 301, 47–51; (b) Okamura, H.; Iiji, H.; Hamada, T.; Iwagawa,
T.; Furuno, H. Tetrahedron 2009, 65, 10709–10714; (c) Veselovsky, V. V.; Gybin,
A. S.; Lozanova, A. V.; Molseenkov, A. M.; Smit, W. A. Tetrahedron Lett. 1998, 29,
2
4
4
.
2009, 48, 5880–5883; (b) Inanaga, K.; Takasu, K.; Ihara, M. J. Am. Chem. Soc.
2004, 126, 1352–1353; (c) Gaddam, V.; Nagarajan, R. Tetrahedron Lett. 2009, 50,
1243–1248; (d) Yamaguchi, R.; Hamasaki, T.; Sasaki, T.; Ohta, T.; Utimoto, K.;
1
75–178; For Cr(III) and Mn(II) catalysed Diels–Alder cycloadditions see: (d)
Jarvo, E. R.; Lawrence, B. M.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44,
043–6046; (e) Phomkeon, K.; Takemoto, T.; Ishima, Y.; Shibatomi, K.; Iwasa,
Kozima, S.; Takaya, H. J. Org. Chem. 1993, 58, 1136–1143; (e) Ramachary, D. B.;
Chowdari, N. S.; Barbas, C. F. Angew. Chem., Int. Ed. 2003, 42, 4233–4237; (f) van
Berkom, L. W. A.; Kuster, G. J. T.; Kalmoua, F.; de Gelder, R.; Scheeren, H. W.
Tetrahedron Lett. 2003, 44, 5091–5093; For the application of intermolecular
hetero Diels–Alder reactions in MCR sequences, see: (g) Powell, D. A.; Batey, R.
A. Org. Lett. 2002, 4, 2913–2916; (h) Lallemand, J.-Y.; Six, Y.; Ricard, L. Eur. J. Org.
Chem. 2002, 503–513; (i) Touré, B. B.; Hall, D. G. Angew. Chem., Int. Ed. 2004, 43,
6
W.; Nishiyama, H. Tetrahedron 2008, 64, 1813–1822.
1
4. Typical procedure for the MCR of 3 in the presence of silica-supported PCC/NaOAc:
Hydroxyacetone (210 mg, 2.8 mmol) was added to a solution of 2,3-dimethyl-
1,3-butadiene (700 mg, 8.2 mmol), silica-supported PCC (1.22 g, 5.7 mmol,
ground with 2 wt equiv of silica), NaOAc (465 mg, 5.68 mmol) and
2
001–2004; (j) Gao, X.; Hall, D. G. J. Am. Chem. Soc. 2005, 127, 1628–1629.
(a) Smith, B. M.; Skellam, E. J.; Oxley, S. J.; Graham, A. E. Org. Biomol. Chem.
007, 5, 1979–1982; (b) Phillips, D. J.; Pillinger, K. S.; Li, W.; Taylor, A. E.;
(
(
carbethoxymethylene)triphenylphosphorane 1a (2.47 g, 7.1 mmol) in toluene
15 mL) and stirred at reflux for 6 h. The reaction mixture was then cooled to
5
.
2
room temperature and filtered through a Celite pad which was washed with
additional toluene (2 Â 10 mL). The combined solvents were removed to give a
yellow oil which was purified by column chromatography (hexane?5% EtOAc/
Graham, A. E. Tetrahedron 2007, 63, 10528–10533; (c) Cott, D.; Owens, V.;
Zeigler, K. J.; Glennon, J. D.; Graham, A. E.; Holmes, J. D. Green Chem. 2005, 7,
1
05–110; (d) Robinson, M. W. C.; Davies, A. M.; Buckle, R.; Mabbett, I.; Taylor, S.
*
*
hexane) to give (1R ,2R )-ethyl 2-acetyl-4,5-dimethylcyclohex-4-enecarboxy-
H.; Graham, A. E. Org. Biomol. Chem. 2009, 7, 2559–2564; (e) Smith, B. M.; Kean,
S. D.; Wyatt, M. F.; Graham, A. E. Synlett 2009, 1953–1956; (f) Robinson, M. W.
C.; Graham, A. E. Tetrahedron Lett. 2007, 48, 4727–4731; (g) Robinson, M. W. C.;
Davies, A. M.; Mabbett, I.; Apperley, D. C.; Taylor, S. H.; Graham, A. E. J. Mol.
Catal. A 2009, 314, 10–14; (h) Robinson, M. W. C.; Davies, A. M.; Mabbett, I.;
Davies, T. E.; Apperley, D. C.; Taylor, S. H.; Graham, A. E. J. Mol. Catal. A 2010,
16
À1
late 7a as a yellow oil (514 mg, 82%);
179, 1155, 1032, 616; 1H NMR (400 MHz; CDCl
1H, dt, J = 11and 5 Hz), 2.70(1H, dt, J = 11and5 Hz), 2.25–1.80(4H, m), 2.15(3H,
m
max (film)/cm ; 2913, 1727, 1712, 1231,
1
(
3
) d = 4.10 (2H, q, J = 7 Hz), 2.90
1
3
s), 1.55 (6H, s), 1.15 (3H, t, J = 7 Hz); C NMR (100 MHz, CDCl
3
) d = 211.0, 175.2,
) m/z+
225.1485 (M+H) , found (M+H)
1
2
2
24.3, 123.6, 60.5, 49.0, 41.8, 34.3, 33.8, 29.0, 18.7, 18.6, 14.2; MS (CI, NH
3
+
+
25 (M+H) , HRMS (ES, NH
3
) calcd for C13
H
21
O
3
329, 57–63; (i) Robinson, M. W. C.; Pillinger, K. S.; Mabbett, I.; Timms, D. A.;
25.1484.
Graham, A. E. Tetrahedron 2010, 66, 8377–8382.
(a) Wei, X.; Taylor, R. J. K. Tetrahedron Lett. 1998, 39, 3815–3818; (b) Blackburn,
L.; Wei, X.; Taylor, R. J. K. Chem. Commun. 1999, 1337–1338; (c) Shuto, S.;
1
1
5. Bonete, P.; Nájera, C. Tetrahedron 1995, 51, 2763–2776.
6. Molander, G. A.; Alonso-Alija, C. J. Org. Chem. 1998, 63, 4336–4373.
6
.