C O M M U N I C A T I O N S
Acknowledgment. This work was supported by grants from
NSERC to G.I.N., the Spanish Ministry of Education and Science
(Ram o´ n y Cajal Program) to S.F.V., by RFBR (grant to L.G.K.)
and by the Royal Society (London) grant to J.A.K.H.
Supporting Information Available: Experimental and computa-
tional details. This material is available free of charge via the Internet
at http://pubs.acs.org
References
(
1) (a) Bart, S. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2004, 126,
1
3794. (b) The actual oxidation state in this complex is Fe(II): Bart, S.
Figure 1. Molecular structures (bond lengths in Å) of compounds 3e and
C.; Chłopek, K.; Bill, E.; Bouwkamp, M. W.; Lobkovsky, E.; Neese, F.;
Wieghardt, K.; Chirik, P. J. J. Am. Chem. Soc. 2006, 128, 13901.
2) Bullock, R. M. Chem.sEur. J. 2004, 10, 2366.
i
3
f (local Cs symmetry; only one rotamer of the disordered Pr group is
shown). Hydrogen atoms apart from hydrides are omitted. 3e: Fe-Si
.1948(6), Fe1-P1 2.2089(6), Fe1-H1 1.37(2), Fe1-H2 1.43(2), Si1-
(
(
3) (a) Nesmeyanov, A. N.; Freidlina, R. K.; Chukovskaya, E. C.; Petrova,
R. G.; Belyavsky, A. B. Tetrahedron 1962, 17, 61. (b) Kakiuchi, F.;
Tanaka, Y.; Chatani, N.; Murai, S. J. Organomet. Chem. 1993, 456, 45.
(c) Ojima, I. In The Chemistry of Organic Silicon Compounds; Patai, S.,
Rappoport, Z., Eds.; Wiley: New York, 1989; Chapter 25. (d) Marciniec,
B. ComprehensiVe Handbook on Hydrosilation; Pergamon: Oxford, 1992.
4) Piper, T. S.; Lemal, D.; Wilkinson, G. Naturwissenschaften 1956, 43, 129.
5) Corey, J. Y.; Braddock-Wilking, J. Chem. ReV. 1999, 99, 175.
6) Trovitch, R. J.; Lobkovsky, E.; Chirik, P. J. Inorg. Chem. 2006, 45, 7252.
2
H1 1.90(2), Si1-H2 1.91(2), Si1-Cl1 2.1355(7), Si1-Cl2 2.1378(7). 3f:
Fe-Si 2.168(1), Fe1-P1 2.2165(9), Fe-H 1.35(3), Si1-H1 1.88(3), Si1-
Cl1 2.0835(14), Si1-Cl2 2.1125(9).
(
(
(
Table 1. Calculated Bond Lengths (in Å)/Mayer Bond Indices and
Si-H Coupling Constants (in Hz) for the Most Stable Isomers of
4-7
(7) (a) Asirvatham, V. S.; Yao, Z.; Klabunde, K. J. J. Am. Chem. Soc. 1994,
116, 5493. (b) Yao, Z.; Klabunde, K. J.; Asirvatham, V. S. Inorg. Chem.
1995, 34, 5289. (c) Yao, Z.; Klabunde, K. J. Organometallics 1995, 14,
5013.
bond
4a
5b
6c
7 a
Fe-Si
2.320/0.74
1.513/0.70
1.511/0.70
2.000/0.18
1.984/0.18
-
2.262/0.79
1.507/0.70
1.507/0.70
2.007/0.16
2.007/0.16
-
2.171/0.82
-22.9
-22.9
2.222/0.81
1.508/0.69
1.514/0.70
1.994/0.18
1.991/0.17
2.152/0.84
2.146/0.83
-42.4
2.194/0.89
1.512/0.70
1.512/0.70
1.995/0.17
1.995/0.17
2.122/0.87
2.126/0.85
-10.1
(
(
8) Simons, R. S.; Tessier, C. A. Organometallics 1996, 15, 2604.
9) Ohki, Y.; Kojima, T.; Oshima, M.; Suzuki, H. Organometallics 2001,
20, 2654.
2
Fe-H
Fe-H
3
2
Si-H
Si-H
(10) (a) Scharrer, E.; Chang, S.; Brookhart, M. Organometallics 1995, 14, 5686.
(b) Gilbert, S.; Knorr, M.; Mock, S.; Schubert, U. J. Organomet. Chem.
3
1994, 480, 241.
Si-Cl(t)
Si-Cl(c)
(
11) (a) Kubas, G. J. Metal Dihydrogen and σ-Bond Complexes; Kluwer
Academic/Plenum: New York, 2001. (b) Crabtree, R. H. Angew. Chem.,
Int. Ed. Engl. 1993, 32, 789. (c) Lin, Z. Chem. Soc. ReV. 2002, 31, 239.
(d) Nikonov G. I. AdV. Organomet. Chem. 2005, 53, 217. (e) For secondary
interactions between silicon and hydrogen atoms (SISHA), see: Lachaize,
S.; Sabo-Etienne, S. Eur. J. Inorg. Chem. 2006, 2115.
-
2
J(Si-H ) -23.5
3
J(Si-H ) -24.3
+1.3
-10.1
d
Jave
-23.9 (21.6) -20.3 (21.9) -17.3(19.2) -10.1(18.9)
(
12) Thomas, C. M.; Peters, J. C. Angew. Chem., Int. Ed. 2006, 45, 776.
a
Cs structure. b Cs structure with the Cl group cis to hydrides; Cl(c) is
c
(13) Vyboishchikov, S. F.; Nikonov, G. I. Organometallics 2007, 26, 4160.
(14) (a) Jetz, W.; Graham, W. A. G. Inorg. Chem. 1971, 10, 1159. (b)
Manojlovi c´ -Muir, L.; Muir, K. W.; Ibers, J. A. Inorg. Chem. 1970, 9,
3
d
cis to hydrides, Cl(t) is trans to H . Weighted according to the Boltzmann
population of three rotamers at 298 K, experimental data in parentheses.
4
47. (c) Smith, R. A.; Bennett, M. J. Acta Crystallogr. 1977, B33, 1118.
(
d) Simpson, K. A. Ph.D. Thesis, University of Alberta, 1973.
of bonding does not depend on the substitution at Si (Table 1) and
(15) Schubert, U. AdV. Organomet. Chem. 1990, 30, 151.
27
(16) Vyboishchikov, S. F.; Nikonov, G. I. Chem.sEur. J. 2006, 12, 8518.
the orientation of the silyl group. In the related silane σ-com-
(
17) Schaeffer, G. W.; Roscoe, J. S.; Stewart, A. C. J. Am. Chem. Soc. 1956,
5,11
plexes and complexes with interligand hypervalent interactions
78, 729.
IHI),1 electron-withdrawing groups on Si tend to weaken the
Si-H bonding, which is not the case for model complexes
Cp(Me P)FeH (SiMe3-nCl
1d
(18) A few stable borohydride complexes of Fe are known: (a) Mehn, M. P.;
Brown, S. D.; Paine, T. K.; Brennessel, W. W.; Cramer, C J.; Peters, J.
C.; Que, L., Jr. Dalton Trans. 2006, 1347. (b) Guilera, G.; McGrady, G.
S.; Steed, J. W.; Kaltsoyannis, N. New J. Chem. 2004, 28, 444. (c) Hillier,
A. C.; Jacobsen, H.; Gusev, D.; Schmalle, H. W.; Berke, H. Inorg. Chem.
(
3
2
n
) (n ) 0-4, 4-7). The IHI additionally
requires the presence of an accepting group trans to the hydride,
2
001, 40, 6334. (d) Ghilardi, C. A.; Innocenti, P.; Midollini, S.; Orlandini,
but the data of Table 1 show that such a stereochemical condition
A. J. Chem. Soc., Dalton Trans. 1985, 605.
does not hold for 4-7. And in fact rotamers 5a,b27 have the longest
(19) Taw, F. L.; Bergman, R. G.; Brookhart, M. Organometallics 2004, 23, 886.
(
(
20) Ng, S. M.; Lau, C. P.; Fan, M.-F.; Lin, Z. Organometallics 1999, 18, 2484.
21) Tobita, H.; Matsuda, Hashimoto, H.; Ueno, K.; Ogino, H. Angew. Chem.,
Int. Ed. 2004, 43, 221.
Si-H bond to the hydride that is trans to the Cl substituent.
Calculation of significant attractive values of Mayer diatomic
energies28 (range from -40.4 to -44.6 kcal‚mol-1) unambiguously
(22) For the same reason, very short Ru-Si and Ru-B distances were observed
3
3
in some η -silane and η -borane complexes of Ru: (a) Atheaux, I.;
Donnadieu, B.; Rodriguez, V.; Sabo-Etienne, S.; Chaudret, B.; Hussein,
K.; Barthelat, J.-C. J. Am. Chem. Soc. 2000, 122, 5664. (b) Alcaraz, G.;
Clot, E.; Helmstedt, U.; Vendier, L.; Sabo-Etienne, S. J. Am. Chem. Soc.
proves the existence of Si‚‚‚H interactions in 4-7. A large propor-
tion of this energy results from the interatomic exchange, indicating
that this Si‚‚‚H attraction has a substantial covalent character.
Another unusual feature of the multicentral bonding in 3-7 is
that substitution at silicon does not affect the value of J(Si-H).
The experimental coupling constants are close to 20 Hz and decrease
only slightly in magnitude from 3a to 3f (Table 1), as do averaged
calculated values. The J(H-Si) for individual Si-H pairs vary
largely in the range 0-40 Hz and are negative, suggesting a direct
Si-H bonding.26 The largest magnitude of J(H-Si) is observed
2007, 129, 8704.
(23) In 3e, both chlorides are trans to hydrides.
(
(
24) Bau, R.; Drabnis, M. H. Inorg. Chim. Acta 1997, 259, 27.
25) Hirshfeld, F. L. Cryst. ReV. 1991, 2, 169.
(26) (a) Ignatov, S. K.; Rees, N. H.; Tyrrell, B. R.; Dubberley, S. R.; Razuvaev,
A. G.; Mountford, P.; Nikonov, G. I. Chem.sEur. J. 2004, 10, 4991. (b)
3
The small positive value of 1.3 Hz for J(Si-H ) in 6 is within the error
of our calculations.
3 2 n
(27) For each complex Cp(Me P)FeH (SiMe3-nCl ) (n ) 0-4) we calculated
three silyl rotamers (a, b, and c). See Supporting Information for details.
28) (a) Mayer, I. Chem. Phys. Lett. 2003, 382, 265. (b) DFT-based formal-
ism: Vyboishchikov, S. F.; Salvador, P.; Duran, M. J. Chem. Phys. 2005,
122, 244110. (c) Correlated formalism: Vyboishchikov, S. F.; Salvador,
P. Chem. Phys. Lett. 2006, 430, 204.
(
2
9
for the hydride located cis to the chloride group on silicon.
Tentatively, we describe these unique30,31 multicentral Si‚‚‚H
interactions in terms of adduct formation between the hypervalent
(
29) This difference comes mainly from the Fermi contact contribution. Pre-
sently we have no rationale for this stereochemical control of J(H-Si).
30) Multiple Si-H interactions have been previously observed for some
complexes of ruthenium, but the effect of substituents has not been clearly
delineated: (a) H u¨ bler, K.; H u¨ bler, U.; Roper, W. R.; Schwerdtfeger, P.;
Write, L. J. Chem.sEur. J. 1997, 3, 1608. (b) Yardy, N. M.; Lemke, F.
R.; Brammer, L. Organometallics 2001, 20, 5670.
-
+
3
16
2
anion [H SiR
3
]
and [Cp(L)Fe] , i.e., as Cp(L)Fe(η -H
2
SiR
3
).
(
i
In conclusion, silane Si-H activation on Cp(Pr
2
MeP)FeH
proceeds differently from the conventionally postulated Si-H
oxidative addition or silane σ-complexation. It starts primarily from
the Si-H f Fe donation, but at a later stage it also involves
significant interaction between the silyl and metal-bound hydride,
(31) Double IHI has been described: Osipov, A. L.; Gerdov, S. M.; Kuzmina,
L. G.; Howard, J. A. K.; Nikonov, G. I. Organometallics 2005, 24, 587.
resulting in a structure with novel H‚‚‚SiR
3
‚‚‚H bonding.
JA800983N
J. AM. CHEM. SOC.
9
VOL. 130, NO. 12, 2008 3733