132
S.M. Ribeiro et al. / Applied Catalysis A: General 399 (2011) 126–133
[18] K.-Y. Zee-Cheng, C.C. Cheng, J. Med. Chem. 12 (1969) 157–161.
[19] P.M. Traxler, O. Wacker, H.L. Bach, J.F. Geissler, W. Kump, T. Meyer, U. Regenass,
J.L. Roesel, N. Lydon, J. Med. Chem. 34 (1991) 2328–2337.
[20] G. Guo, E.A. Arvanitis, R.S. Pottorf, M.R. Player, J. Comb. Chem. 5 (2003) 408–413.
[21] A. Gazit, N. Osherov, I. Posner, P. Yaish, E. Poradosu, C. Gilon, A. Levitzki, J. Med.
Chem. 34 (1991) 1896–1907.
[22] O. Schales, H.A. Graefe, J. Am. Chem. Soc. 74 (1952) 4486–4490.
[23] S.A. –El Ayoubi, F. Texier-Boullet, J. Hamelin, Synthesis (1994) 258–260.
[24] R.S. Varma, R. Dahiya, S. Kumar, Tetrahedron Lett. 38 (1997) 5131–5134.
[25] M.A. Parker, D.M. -Lewicka, D. Kurrasch, A.T. Shulgin, D.E. Nichols, J. Med. Chem.
41 (1998) 1001–1005.
[26] C.F.H. Allen, F.W. Spangler, Org. Synth. Coll. III (1955) 377–379.
[27] L. Rand, J.V. Swisher, C.J. Cronin, J. Org. Chem. 27 (1962) 3505–3507.
[28] G. Cardillo, S. Fabbroni, L. Gentilucci, M. Gianotti, A. Tolomelli, Synth. Commun.
33 (2003) 1587–1594.
[29] P.S. Rao, R.V. Venkataratnam, Tetrahedron Lett. 32 (1991) 5821–5822.
[30] J.S. Yadav, B.V.S. Reddy, A.K. Basak, B. Visali, A.V. Narsaiah, K. Nagaiah, Eur. J.
Org. Chem. (2004) 546–551.
[31] Y. Liu, J. Liang, X.H. Liu, J.C. Fan, Z.C. Shang, Chin. Chem. Lett. 19 (2008)
1043–1046.
[32] R. Ballini, A. Palmieri, Curr. Org. Chem. 10 (2006) 2145–2169.
[33] K.M. Parida, S. Mallick, P.C. Sahoo, S.K. Rana, Appl. Catal. A: Gen. 213 (2010)
226–232.
[34] F.R. -Llansola, B. Escuder, J.F. Miravet, J. Am. Chem. Soc. 131 (2009)
11478–11484.
[35] R.W. Hein, M.J. Astle, J.R. Shelton, J. Org. Chem. 26 (1961) 4874–4878.
[36] J.A. Cabello, J.M. Campelo, A. Garcia, D. Luna, J.M. Marinas, J. Org. Chem. 49
(1984) 5195–5197.
Fig. 3. Proposed reaction mechanism for the Knoevenagel condensation reaction
involving the different amine groups of the ASCPEI catalyst.
[37] D. Prajapati, K.C. Lekhok, J.S. Sandhu, A.C. Ghosh, J. Chem. Soc. Perkin Trans. 1
(1996) 959–960.
4. Conclusion
[38] S.-X. Wang, J.-T. Li, W.-Z. Yang, T.-S. Li, Ultrason. Sonochem. 9 (2002) 159–161.
[39] M. Gopalakrishnan, P. Sureshkumar, V. Kanagarajan, J. Thanusu, S.
Thirunavukkarasu, J. Kor. Chem. Soc. 51 (2007) 346–351.
[40] T. Luts, W. Suprum, D. Hofmann, O. Klepel, H. Papp, J. Mol. Catal. A: Chem. 261
(2007) 16–23.
In nitroaldol condensations the catalytic activity of primary
amine groups grafted onto silica surfaces by carbon chain spacers
is dependent on the length of the chain. The catalyst with amine
groups near the silica surface is more efficient than catalysts with
amine groups far-off.
Grafting a polyethylenimine polymer onto the silica structure
by 3-(glycidyloxypropyl)-trimethoxysilane activation originates an
active catalyst showing great efficiency in the Knoevenagel conden-
sation, originating ␣-cyanocinnamates in good yields under mild
reaction conditions. Reutilization of this catalyst showed no loss of
activity. The increased activity of this catalyst can be related to the
presence, on the polymer structure, of primary amine and other
amine groups that can work in cooperation.
[41] S.M. Ribeiro, A.C. Serra, A.M.d’A. Rocha Gonsalves, J. Mol. Catal. A: Chem. 326
(2010) 121–127.
[42] I. Taylor, A.G. Howard, Anal. Chim. Acta 271 (1993) 77–82.
[43] K.K. Sharma, R.P. Buckley, T. Asefa, Langmuir 24 (2008) 14306–14320.
[44] A. Cwik, A. Fuchs, Z. Hell, J.M. Clecens, Tetrahedron 61 (2005) 4015–4021.
[45] S. Jammi, M.A. Ali, S. Sakthivel, L. Rout, T. Punniyamurthy, Chem. Asian J. 4
(2009) 314–320.
[46] S. Lühr, M. Vilches-Herrera, A. Fierro, R. Rona, D.E. Ramsay, M. Edmondson,
B.K. Reyes-Parada, P. Cassels, Iturriaga-Vásquez, Bioorg. Med. Chem. 18 (2010)
1388–1395.
[47] S. Yan, Y. Gao, R. Xing, Y. Shen, Y. Liu, P. Wu, H. Wu, Tetrahedron 64 (2008)
6294–6299.
[48] A. Anan, K.K. Sharma, T. Asefa, J. Mol. Catal. 288 (2008) 1–13.
[49] Y. Lu, Z. Ren, W. Cao, W. Tong, M. Gao, Synth. Commun. 34 (2004) 2047–2051.
[50] G. Sartori, F. Bigi, R. Maggi, R. Sartorio, D.J. Macquarrie, M. Lenarda, L. Storaro,
S. Coluccia, G. Martra, J. Catal. 222 (2004) 410–418.
Acknowledgments
[51] S. Huh, H.-T. Chen, J.W. Wiench, M. Pruski, V.S.-Y. Lin, J. Am. Chem. Soc. 126
(2004) 1010–1011.
[52] X. Wang, Y.-H. Tseng, J.C.C. Chan, S. Cheng, J. Catal. 233 (2005) 266–275.
[53] S. Shylesh, A. Wagner, A. Seifert, S. Ernst, W.R. Thiel, Chem. Eur. J. 15 (2009)
7052–7062.
[54] A. Corma, S. Iborra, I. Rodríguez, F. Sánchez, J. Catal. 211 (2002) 208–215.
[55] G. Demicheli, R. Maggi, A. Mazzacani, P. Righi, G. Sartori, F. Bigi, Tetrahedron
Lett. 42 (2001) 2401–2403.
[56] K.K. Sharma, T. Asefa, Angew. Chem. Int. Ed. 46 (2007) 2879–2882.
[57] K.K. Sharma, A. Anan, R.P. Buckley, W. Ouellette, T. Asefa, J. Am. Chem. Soc. 130
(2008) 218–228.
[58] S.L. Hruby, B.H. Shanks, J. Catal. 263 (2009) 181–188.
[59] K.M. Parida, D. Rath, J. Mol. Catal. A: Chem. 310 (2009) 93–100.
[60] Y. Huang, B.G. Trewyn, H.-T. Chen, V.S.-Y. Lin, New J. Chem. 32 (2008)
1311–1313.
[61] E. Angeletti, C. Canepa, G. Martinetti, P. Venturello, J. Chem. Soc. Perkin Trans.
1 (1989) 105–106.
[62] D.J. Macquarrie, J.H. Clark, A. Lambert, J.E.G. Mdoe, A. Priest, React. Funct. Polim.
35 (1997) 153–158.
[63] K. Motokura, M. Tomita, M. Tada, Y. Iwasawa, Chem. Eur. J. 14 (2008)
4017–4027.
[64] K. Motokura, M. Tada, Y. Iwasawa, Angew. Chem. Int. Ed. 47 (2008) 9230–9235.
[65] K. Motokura, M. Tada, Y. Iwasawa, Chem. Asian J. 3 (2008) 1230–1236.
[66] K. Motokura, S. Tanaka, M. Tada, Y. Iwasawa, Chem. Eur. J. 15 (2009)
10871–10879.
[67] D.J. Macquarrie, D.B. Jackson, Chem. Commun. (1997) 1781–1782.
[68] M.L. Kantam, P. Sreekanth, Catal. Lett. 57 (1999) 227–231.
[69] D.B. Jiménez, I. Sobczak, M. Ziolek, A.J.L. Peinado, R.M.M. Aranda, Catal. Today
152 (2010) 119–125.
[70] D. Zois, C. Vartzouma, Y. Deligiannakis, N. Hadjiliadis, L. Casella, E. Monzani, M.
Louloudi, J. Mol. Catal. A: Chem. 261 (2007) 306–317.
[71] B. Gao, X. Zhang, J. Wang, J. Mater. Sci: Mater. Med. 19 (2008) 3021–3028.
[72] J.A. Pavlisko, C.G. Overberger, J. Polym. Sci: Polym. Chem. 19 (1981) 1757–1766.
[73] A. Everaets, C. Samyn, G. Smets, Makromol. Chem. 185 (1984) 1897–1904.
[74] J. Suh, I.M. Klotz, J. Am. Chem. Soc. 106 (1984) 2373–2378.
The authors would like to thank Chymiotechnon, FCT-
POCTI/QUI/55931/2004 and FCT (SFRH/BD/40228/2007) for finan-
cial support. We acknowledge the Nuclear Magnetic Resonance
Laboratory of the Coimbra Chemical Centre-University of Coimbra
(Proj/REEQ/481/QUI/2006) for the NMR data.
References
[1] P.T. Anastas, M.M. Kirchhoff, Acc. Chem. Res. 35 (2002) 686–694.
[2] J.H. Clark, Green Chem. 1 (1999) 1–8.
[3] R.T. Baker, S. Kobayashi, W. Leitner, Adv. Synth. Catal. 348 (2006) 1337–1340.
[4] F. Cozzi, Adv. Synth. Catal. 348 (2006) 1367–1390.
[5] J.H. Clark, Acc. Chem. Res. 35 (2002) 791–797.
[6] M. Boronat, M.J. Climent, A. Corma, S. Iborra, R. Montón, M.J. Sabater, Chem.
Eur. J. 16 (2010) 1221–1231.
[7] E.L. Margelefsky, R.K. Zeidan, M.E. Davis, Chem. Soc. Rev. 37 (2008) 1118–1126.
[8] J.L. York, in: T.M. Devlin (Ed.), Textbook of Biochemistry with Clinical Correla-
tions, 4th ed., Wiley-liss, Inc., New-York, 1997, pp. 128–178.
[9] J.M. Notestein, A. Katz, Chem. Eur. J. 12 (2006) 3954–3956.
[10] J.D. Bass, A. Solovyov, A.J. Pascall, A. Katz, J. Am. Chem. Soc. 128 (2006)
3737–3747.
[11] A. Corma, H. Garcia, Adv. Synth. Catal. 348 (2006) 1391–1412.
[12] A. Molnár, B. Rac, Curr. Org. Chem. 10 (2006) 1697–1726.
[13] J.H. Clark, D.J. Macquarrie, S.J. Tavener, Dalton Trans. (2006) 4297–4309.
[14] F. Hoffmann, M. Cornelius, J. Morell, M. Froba, Angew. Chem. Int. Ed. 45 (2006)
3216–3251.
[15] G. Jones, Org. React. 15 (1967) 204–599.
[16] A.G.M. Barrett, G.G. Graboski, Chem. Rev. 86 (1986) 751–762.
[17] N. Milhazes, R. Calheiros, M.P.M. Marques, J. Garrido, M.N.D.S. Cordeiro, C.
Rodrigues, S. Quinteira, C. Novais, L. Peixe, F. Borges, Bioorg. Med. Chem. 14
(2006) 4078–4088.