ORGANIC
LETTERS
2011
Vol. 13, No. 3
454-457
An Efficient Copper-Catalyzed
Carbon-Sulfur Bond Formation
Protocol in Water
Fang Ke, Yanyang Qu, Zhaoqiong Jiang, Zhengkai Li, Di Wu, and Xiangge Zhou*
Institute of Homogeneous Catalysis, College of Chemistry, Sichuan UniVersity,
Chengdu 610041, China
Received November 17, 2010
ABSTRACT
An efficient protocol of copper-catalyzed C-S bond formation between aryl halides and potassium thiocyanate leading to diaryl sulfides is
reported. A variety of diaryl sulfides can be synthesized in good to excellent yields up to 94%.
The development of new, efficient, and environmentally
benign synthetic methodologies for the construction of
complex molecules is an important target in modern organic
synthesis.1 Diaryl sulfide functionalities have been found in
numerous drugs with a broad spectrum of therapeutic
activities such as antidiabetes, anti-inflammatory, anti-
Alzheimer’s, anti-Parkinson’s, anticancer, and anti-HIV.2
However, the related C-S bond formation reactions are less
studied compared with C-N and C-O processes, which is
partially caused by the fact that organic sulfur compounds
have a tendency to bind to metals, acting as metal deactiva-
tors.3 Originally, the traditional methods for the formation
of C-S bonds take place in polar solvents, such as HMPA,
and at elevated temperatures around 200 °C.4 To overcome
these drawbacks, transition-metal-catalyzed coupling systems
have been explored. Migita et al. first reported cross-coupling
reactions of aryl halides with thiols in the presence of
Pd(PPh3)4 in their seminal work in 1980.5 Recently, nickel,6
palladium,7 iron,8 and cobalt9 catalysts have emerged as
appealing catalysts for this reaction.
Copper salts have also been used as alternative and
promising catalysts for many organic transformations includ-
ing C-S bond forming reaction.10
On the other hand, the common methods for the assembly
of diaryl sulfides are based on the condensation of aryl halides
with thiols or metal sulfides. Less common synthetic strategies
involve the transformation of thiourea or disulfides.11 Still and
Toste reported that direct preparation of diaryl sulfides could
be achieved Via the reaction of samarium thiolates with aryl
(5) Migita, T.; Shimizu, T.; Asami, Y.; Shiobara, J.; Kato, Y.; Kosugi,
M. Bull. Chem. Soc. Jpn. 1980, 53, 1385.
(6) (a) Percec, V.; Bas, J. Y.; Hill, D. H. J. Org. Chem. 1995, 60, 6895.
(b) Beletskaya, I. P.; Ananikov, V. P. Eur. J. Org. Chem. 2007, 3431. (c)
Zhang, Y.; Ngeow, K. C.; Ying, J. Y. Org. Lett. 2007, 9, 3495.
(7) (a) Mispelaere-Canivet, C.; Spindler, J.-F.; Perrio, S.; Beslin, P.
Tetrahedron 2005, 61, 5253. (b) Itoh, T.; Mase, T. Org. Lett. 2004, 6, 4587.
(c) Fernandez Rodr´ıguez, M. A.; Shen, Q.; Hartwig, J. F. J. Am. Chem.
Soc. 2006, 128, 2180. (d) Murata, M.; Buchwald, S. L. Tetrahedron 2004,
60, 7397. (e) Schopfer, U.; Schlapbach, A. Tetrahedron 2001, 57, 3069.
(f) Li, G. Y. Angew. Chem., Int. Ed. 2001, 40, 1513. (g) Zheng, N.;
McWilliams, J. C.; Fleitz, F. J.; Armstrong, J. D., III; Volante, R. P. J.
Org. Chem. 1998, 63, 9606. (h) Mann, G.; Baranano, D.; Hartwig, J. F.;
Rheingold, A. L.; Guzei, I. A. J. Am. Chem. Soc. 1998, 120, 9205. (i)
Eichman, C. C.; Stambuli, J. P. J. Org. Chem. 2009, 74, 4005. (j) Jiang,
Z.; She, J.; Lin, X. AdV. Synth. Catal. 2009, 351, 2558.
(1) (a) Jones, D. N. ComprehensiVe Organic Chemistry; Barton, D. H.,
Ollis, D. W., Eds.; Pergamon: New York, 1979. (b) Tiecco, M. Synthesis
1988, 749. (c) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire,
M. Chem. ReV. 2002, 102, 1359. (d) Beletskaya, I. P.; Cheprakov, A. V.
Coord. Chem. ReV. 2004, 248, 2337. (e) Ley, S. V.; Thoma, A. W. Angew.
Chem., Int. Ed. 2003, 42, 5400. (f) Herradura, P. S.; Pendola, K. A.; Guy,
R. K. Org. Lett. 2000, 2, 2019.
(2) (a) Liu, G.; Huth, J. R.; Olejniczak, E. T.; Mendoza, F.; Fesik, S. W.;
Von Genldern, T. W. J. Med. Chem. 2001, 44, 1202. (b) Nielsen, S. F.;
Nielsen, E. Ø.; Olsen, G. M.; Liljefors, T.; Peters, D. J. Med. Chem. 2000,
43, 2217.
(8) (a) Correa, A.; Carril, M.; Bolm, C. Angew. Chem., Int. Ed. 2008,
47, 2880. (b) Wu, W.-Y.; Wang, J.-C.; Tsai, F.-Y. Green Chem. 2009, 11,
326.
(3) Kondo, T.; Mitsudo, T. Chem. ReV. 2000, 100, 3205.
(4) Lindley, J. Tetrahedron 1984, 40, 1433.
(9) Wong, Y. C.; Jayanth, T. T.; Cheng, C. H. Org. Lett. 2006, 8, 5613.
10.1021/ol102784c 2011 American Chemical Society
Published on Web 12/21/2010