Letters
J ournal of Medicinal Chemistry, 2004, Vol. 47, No. 16 3937
rial is available free of charge via the Internet at http://
pubs.acs.org.
Harrison, S. D. Selective glycogen synthase kinase 3 inhibitors
potentiate insulin activation of glucose transport and utilization
in vitro and in vivo. Diabetes 2003, 52, 588.
(
13) Moyer, M. P.; Shiurba, J . F.; Rapoport, H. Metal-Halogen
exchange of bromoindoles. A route to substituted indoles. J . Org.
Chem. 1986, 51, 5106.
Refer en ces
(
(
(
1) Amos, A. F.; McCarty, D. J .; Zimmet, P. The rising global burden
of diabetes and its complications: estimations and projections
to the year 2010. Diabetic Med. 1997, 14 (Suppl 5), S1-S85.
2) (a) Cohen, P.; Frame, S. The renaissance of GSK. Nat. Rev. Mol.
Cell. Biol. 2001, 2, 769. (b) Cohen, P.; Goedert, M. Nat. Rev.
Drug. Disc. 2004, 3, 479.
(14) The synthesis of 4 (R2 ) H) has been reported. (a) Al-Awar, R.
S.; Ray, J . E.; Hecker, K. A.; J oseph, S.; Huang, J .; Shih, C.;
Brooks, H. B.; Spencer, C. D.; Watkins, S. A.; Schultz, R. M.;
Considine, E. L.; Faul, M. M.; Sullivan, K. A.; Kolis, S. P.; Carr,
M. A.; Zhang, F. Preparation of novel aza-1,7-annulated indoles
and their conversion to potent indolocarbazole kinase inhibitors.
Bioorg. Med. Chem. Lett. 2004, in press. (b) Al-Awar, R. S.;
Hecker, K. A.; Huang, J .; Sajan, J . Ray, J . E.; Waid, P. P.
Preparation of maleimide and carbazole derivatives for the
treatment of proliferative diseases. WO2001044235 A3.
(15) Almirante, L.; Mugnaini, A.; Rugarli, P.; Gamba, A.; Zefelippo,
E.; De Toma, N.; Murmann, W. Derivatives of imidazole. III.
Synthesis and pharmacological activities of nitriles, amides, and
carboxylic acid derivatives of imidazo[1,2-a]pyridine. J . Med.
Chem. 1969, 12, 122.
(16) (a) Faul, M. M.; Winneroski, L. L.; Krumrich, C. A. A new,
efficient method for the synthesis of bisindolylmaleimides. J .
Org. Chem. 1998, 63, 6053. (b) Faul, M. M.; Winneroski, L. L.;
Krumrich, C. A. A new one step synthesis of maleimides by
condensation of glyoxylate esters with acetamides. Tetrahedron
Lett. 1999, 40, 1109.
(17) Wall, M. E.; Wani, M. C.; Mansukh, C.; Nicholas, A. W.;
Manikumar, G.; Tele, C.; Moore, L.; Truesdale, A.; Leitner, P.;
Besterman, J . M. Plant antitumor agents. 30. Synthesis and
activity of novel camptothecin analogues. J . Med. Chem. 1993,
36, 2689.
(18) (a) Bartoli, G.; Palmieri, G.; Bosco, M.; Dalpozzo, R. The reaction
of vinyl Grignard reagents with 2-substituted nitroarenes: A
new approach to the synthesis of 7-substituted indoles. Tetra-
hedron Lett. 1989, 30, 2129. (b) Bosco, M.; Dalpozzo, R.; Bartoli,
G.; Palmieri, G.; Petrini, M. Mechanistic Studies on the Reaction
of Nitro- and Nitrosoarenes with Vinyl Grignard Reagents. J .
Chem. Soc., Perkin Trans. 2, 1991, 657. (c) Dobson, D. R.;
Gilmore, J .; Long, D. A. Synthesis of 7-formylindole using the
Bartoli indole methodology. Synlett 1992, 79.
3) Ali, A.; Hoeflich, K. P.; Woodgett, J . R. Glycogen Synthase
Kinase-3: Properties, Functions, and Regulation. Chem. Rev.
2
001 101, 2527.
(
(
(
4) Woodgett, J . R. Molecular cloning and expression of glycogen
synthase kinase-3/ factor A. EMBO J . 1990, 9, 2431.
5) Cohen, P. Muscle glycogen synthase. The Enzymes; Academic
Press: New York, 1986; Vol. XVII, p 461.
6) Cross, D. A. E.; Alessi, D. R.; Cohen, P.; Andjelkovich, M.;
Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by
insulin mediated by protein kinase B. Nature 1995, 378, 785.
7) Nikoulina, S. E.; Ciaraldi, T. P.; Mudaliar, S.; Mohideen, P.;
Cartet, L.; Henry R. R. Potential role of glycogen synthase
kinase-3 in skeletal muscle insulin resistance of type 2 diabetes.
Diabetes 2000, 49, 263.
(
(
8) (a) Wagman, A. S.; J ohnson, K. W.; Bussiere, D. E. Discovery
and Development of GSK3 Inhibitors for the Treatment of Type
2
Diabetes. Curr. Pharm. Design, 2004, 10, 1. (b) For recent
papers with leading references, see (b) Polychronopoulos, P.;
Magiatis, P.; Skaltsounis, A.-L.; Myrianthopoulos, V.; Mikros,
E.; Tarricone, A.; Musacchio, A.; Roe, S. M.; Pearl, L.; Leost, M.;
Greengard, P.; Meijer, L. Structural basis for the synthesis of
indirubins as potent and selective inhibitors of glycogen synthase
kinase-3 and cyclin-dependent kinases. J . Med. Chem. 2004, 47,
9
35. (c) Kunick, C.; Lauenroth, K.; Leost, M.; Meijer, L.; Lemcke,
T. 1-Azakenpaullone is a selective inhibitor of glycogen synthase
kinase-3â. Bioorg. Med. Chem. Lett. 2004, 14, 413.
(
9) Hers, I.; Tavare, J . M.; Denton, R. M. The protein kinase
C inhibitors bisindolylmaleimide I (GF 109203x) and IX (Ro
3
1-8220) are potent inhibitors of glycogen synthase kinase-3
activity. FEBS Lett. 1999, 460, 433.
(19) Fiol, C. J .; Williams, J . S.; Chou, C. H.; Wang, Q. M.; Roach,
(
10) Coghlan, M. P.; Culbert, A. A.; Cross, D. A. E.; Corcoran, S. L.;
Yates, J . W.; Pearce, N. J .; Rausch, O. L.; Murphy, G. J .; Carter,
P. S.; Cox, L. R.; Mills, D.; Brown, M. J .; Haigh, D.; Ward, R.
W.; Smith, D. G.; Murray, K. J .; Reith, A. D.; Holder, J . C.
Selective small molecule inhibitors of glycogen synthase kinase-3
modulate glycogen metabolism and gene transcription. Chem.
Biol. 2000, 7, 793.
P. J .; Andrisani, O. M. A secondary phosphorylation of
CREB341 at Ser129 is required for the cAMP-mediated control
of gene expression. A role for glycogen synthase kinase-3 in
the control of gene expression. J . Biol. Chem. 1994, 269,
32187.
(20) Wang, Q. M.; Roach, P. J .; Fiol, C. J . Use of a synthetic peptide
as a selective substrate for glycogen synthase kinase-3. Anal.
Biochem.1994, 220, 397.
(21) Takahashi, M.; Yasutake, K.; Tomizawa, K. Lithium inhibits
neurite growth and Tau protein kinase I/glycogen synthase
kinase-3â-dependent phosphorylation of juvenile Tau in cultured
hippocampal neurons. J . Neurochemistry 1999, 73 (5), 2073.
(
11) (a) Kuo, G.; Prouty, C.; DeAngelis, A.; Shen, L.; O’Neill, D. J .;
Shah, C.; Connolly, P. J .; Murray, W. V.; Conway, B. R.; Cheung,
P.; Westover, L.; Xu, J . Z.; Look, R. A.; Demarest, K. T.; Emanuel,
S.; Middleton, S. A.; J olliffe, L.; Beavers, M. P.; Chen, X.
Synthesis and discovery of macrocyclic polyoxygenated bis-7-
azaindolylmaleimides as a novel series of potent and highly
selective glycogen synthase kinase-3â inhibitors. J . Med. Chem.
(22) The K of 11 was determined to be 0.38 nM using traditional
i
kinetics and 0.23 nM via Biacore experiments. This compound
was also shown to be a tight binding inhibitor, with the IC50
being dependent on enzyme concentration.
2
003, 46, 4021. (b) Zhang, H.-C.; White, K. B.; Ye, H.; McComsey,
D. F.; Derian, C. K.; Addao, M. F.; Andrade-Gordon, P.; Eckardt,
A. J .; Conway, B. R.; Westover, L.; Xu, J . Z.; Look, R.; Demarest,
K. T.; Emanuel, S.; Maryanoff, B. E. Macrocyclic bisindolyl-
maleimides as inhibitors of protein kinase C and glycogen
synthase kinase-3. Bioorg. Med. Chem. Lett. 2003, 13, 3049.
12) ZDF rat data for a structurally distinct series of GSK3 inhibitors
has been reported. Ring, D. A.; J ohnson, K. W.; Henriksen, E.
J .; Nuss, J . M.; Goff, D.; Kinnick, T. R.; Ma, S. T.; Reeder, J . W.;
Samuels, I.; Slabiak, T.; Wagman, A. S.; Hammond, M. W.;
(23) Cross reactivity with CDKs and PKCs is common for many, but
not all, GSK-3 inhibitors. See refs 8b, 8c, and 11.
(24) Mordes, J . P.; Rossini, A. A. Animal models of diabetes. Am. J .
Med. 1981, 70, 353.
(25) For comparison, the PPAR agonist rosiglitazone has an MED
in the range of 1-3 mg/kg in the same ZDF rat assay.
(
J M049768A