Angewandte
Chemie
formation of urea derivatives when cyclohexylamine is the
substrate (Table 1 entries 1–6).[21] If the conversion is suffi-
ciently high, the desired product precipitates on adding about
10 mL water into the reaction mixture as urea is insoluble in
water,[22] whereas CsOH and the ionic liquid are water-soluble
(Figure 1). The solid product could be recovered by filtration
and dried. A yield of 98% was obtained when BMImCl ionic
liquid containing CsOH was employed (Table 1 entry 3).
nates. The concept of reaction and separation has been
fulfilled with a simple CsOH/ionic liquid catalyst system that
takes advantage of the nonvolatility and selective solubility of
the ionic liquid. This concept may be expanded to other
catalysis systems.
Received: February 4, 2003 [Z51098]
Keywords: amines · carbon dioxide · carbonylation · green
.
chemistry · ionic liquids
[1] M. Aresta, E. Quaranta, CHEMTECH 1997, 32.
[2] M. Aresta, A. Ciccarese, P. Giannoccaro, E. Quaranta, I.
Tommasi, Gazz. Chim. Ital. 1995, 125, 509.
[3] A. M. Tafesh, J. Weiguny, Chem. Rev. 1996, 96, 2035.
[4] T. W. leung, B. D. Dombek, J. Chem. Soc. Chem. Commun. 1992,
205.
[5] a) V. L. K. Valli, H. Alper, J. Am. Chem. Soc. 1993, 115, 3778;
b) E. Alessio, G. Mestroni, J. Organomet. Chem. 1985, 291, 117;
c) Y. Izumi, Y. Satoh, H. Kondoh, K. Yrabe, J. Mol. Catal. 1992,
72, 37; d) Y. Izumi, Y. Satoh, K. Urabe, Chem. Lett. 1990, 795;
e) A. A. Kelkar, D. S. Kolhe, S. Kanagasabapathy, R. V. Chaud-
hari, Ind. Eng. Chem. Res. 1992, 31, 172; f) P. Wehman, P. C. J.
Kamer, P. W. N. M. van Leeuwen, Chem. Commun. 1996, 217;
g) I. Pri-Bar, J. Schwartz, J. Org. Chem. 1995, 60, 8124;
h) V. L. K. Valli, H. Alper, Organometallics 1995, 14, 80; i) P.
Wehman, V. E. Kaasjager, W. G. J. de Lange, F. Hartl, P. C. J.
Kamer, P. W. N. M. van Leeuwen, Organometallics 1995, 14,
3751; j) F. Bigi, R. Maggi, G. Sartori, Green Chem. 2000, 2, 140.
[6] a) S. Cenini, M. Pizzotti, C. Crotti, F. Porta, G. La Monica, J.
Chem. Soc. Chem. Commun. 1984, 1286; b) D. K. Mukherjee,
B. K. Palit, C. R. Saha, J. Mol. Catal. 1994, 91, 19.
Figure 1. a) The resulting liquidmixture after the reaction of cyclohexyl-
amine with CO2. b) The reaction mixture with added water, the ionic
liquidandbase dissolvedin the water layer andthe crystallizedprod-
uct precipitated.
[7] a) F. Ragaini, S. Cenini, A. Fumagalli, C. Crotti, J. Organomet.
Chem. 1992, 428, 401; b) F. Ragaini, S. Cenini, F. Demartin,
Organometallics 1994, 13, 1178; c) C. V. Rode, S. P. Gupte, R. V.
Chaudhari, C. D. Pirozhkov, A. L. Lapidus, J. Mol. Catal. 1994,
91, 195.
[8] R. Ugo, R. Psaro, M. Pizzotti, P. Nardi, C. Dossi, A. Andreetta,
G. Capparella, J. Organomet. Chem. 1991, 417, 211.
[9] a) H. Hoberg, F. J. Fananas, H. J. Riegel, J. Organomet. Chem.
1983, 254, 267; b) P. Giannoccaro, C. F. Nobile, P. Mastrorolli, N.
Ravasio, J. Organomet. Chem. 1991, 419, 251.
[10] a) G. Maddinelli, M. Nall, B. Rindone, S. Tollari, J. Mol. Catal.
1987, 39, 71; b) A. Bassoli, B. Rindone, S. Tollari, J. Mol. Catal.
1990, 60, 41.
[11] a) F. Calderazzo, Inorg. Chem. 1965, 4, 293; b) B. D. Dombek,
R. J. Angelici, J. Organomet. Chem. 1977, 134, 203; c) S. C.
Srivastava, A. K. Shrimal, A. Sricastava, J. Organomet. Chem.
1991, 414, 65.
[12] a) N. Sonoda, Pure Appl. Chem. 1993, 65, 699; b) Y. Yang and S.
Liu, Tetrahedron Lett. 1999, 40, 4845; c) H. S. Kim, Y. J. Kim, H.
Lee, S. D. Lee, C. S. Chin, J. Catal. 1999, 184, 526.
[13] a) F. Shi, Y. Deng, H. Yang, T. SiMa, Chem. Commun, 2001, 345;
b) F. Shi, Y. Deng, Chem. Commun. 2001, 432; c) F. Shi, Y. Deng,
J. Catal. 2002, 211, 548.
[14] a) J. E. McCusker, K. A. Abboud, L. McElwee-White, Organo-
metallics 1997, 16, 3863; b) L. Lee, D. Chen, Y. Lin, Y. Lo, C. H.
Lin, G. Lee, Y. Wang, Organometallics 1997, 16, 4636; c) J. E.
McCusker, J. Logan, L. McElwee-White, Organometallics 1998,
17, 4037; d) J. E. McCusker, A. D. Main, K. S. Johnson, C. A.
Grasso, L. McElwee-White, J. Org. Chem. 2000, 65, 5216.
[15] a) Y. Fu, T. Baba, Y. Ono, J. Catal. 2001, 197, 91; b) R. N.
Salvatore, S. I. Shin, A. S. Nagle, K. W. Jung, J. Org. Chem. 2001,
66, 1035; c) M. Selva, P. Tundo, A. Perosa, Tetrahedron Lett.
2002, 43, 1217.
The use of a weaker base was found to disfavor the
formation of urea derivatives; a yield of only 53.5% was
obtained when CsOH was replaced with KOH, a relatively
weak base. The ionic liquid was indispensable for the
formation of the desired product as the yield of dicyclohexyl
urea was almost zero in the absence of ionic liquid.
As to primary amines with a linear chain, a longer reaction
time was needed to obtain similar yields to those of cyclo-
hexylamine, (Table 1 entries 7, 8).
Surprisingly, good results were also achieved with aro-
matic amines, which have never been effectively carbonylated
directly by carbon dioxide, although longer reaction times
were required. Yields of 27% and 33% were obtained with
aniline and p-methoxylaniline, respectively, (Table 1entries 9,
10). No urea derivative was afforded with m-nitroaniline,
which may be attributed to the strong electron-withdrawing
property of the nitro group.
The recycling of BMImCl/CsOH catalyst system was also
tested. Ionic liquid containing CsOH could be recovered and
reused after it was distillated to remove water, and a yield of
93% of urea was obtained when CsOH/BMImCl system was
used for a third time.
In summary, the organic-solvent- and dehydrating-agent-
free process for carbonylation of both aliphatic and aromatic
amines with carbon dioxide to afford urea derivatives is
simple, clean, safe, reproducible, and even practical. Further-
more, urea derivatives are potential precursors for the
phosgene- and carbon monoxide-free synthesis of isocya-
Angew. Chem. Int. Ed. 2003, 42, 3257 – 3260
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3259