Page 13 of 15
ACS Catalysis
35. Purbia, R.; Paria, S. Yolk/shell nanoparticles: Classifications,
18. Takahashi, Y.; Hashimoto, N.; Hara, T.; Shimazu, S.;
synthesis, properties, and applications. Nanoscale 2015, 7,
19789-19873.
36. Liu, R.; Priestley, R. D. Rational design and fabrication of
core–shell nanoparticles through a one-step/pot strategy. J.
Mater. Chem. A 2016, 4, 6680-6692.
37. El-Toni, A. M.; Habila, M. A.; Labis, J. P.; ZA, A. L.; Alhoshan,
M.; Elzatahry, A. A.; Zhang, F. Design, synthesis and applica-
tions of core-shell, hollow core, and nanorattle multifunc-
tional nanostructures. Nanoscale 2016, 8, 2510-2531.
38. Lee, J.; Park, J. C.; Song, H. A nanoreactor framework of a
Mitsudome, T.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Highly
efficient Pd/SiO2–dimethyl sulfoxide catalyst system for selec-
tive semihydrogenation of alkynes. Chem. Lett. 2011, 40, 405-
407.
1
2
3
4
5
6
7
8
19. Verho, O.; Zheng, H.; Gustafson, K. P. J.; Nagendiran, A.; Zou,
X.; Bäckvall, J.-E. Application of Pd nanoparticles supported
on mesoporous hollow silica nanospheres for the efficient and
selective semihydrogenation of alkynes. ChemCatChem 2016,
8, 773-778.
20. Mizugaki, T.; Murata, M.; Fukubayashi, S.; Mitsudome, T.;
Jitsukawa, K.; Kaneda, K. Pamam dendron-stabilised palla-
dium nanoparticles: Effect of generation and peripheral
groups on particle size and hydrogenation activity. Chem.
Commun. 2008, 241-243.
21. Karakhanov, E.; Maximov, A.; Kardasheva, Y.; Semernina, V.;
Zolotukhina, A.; Ivanov, A.; Abbott, G.; Rosenberg, E.;
Vinokurov, V. Pd nanoparticles in dendrimers immobilized
on silica-polyamine composites as catalysts for selective hy-
drogenation. ACS Appl. Mater. Interfaces 2014, 6, 8807-8816.
22. Sajiki, H.; Mori, S.; Ohkubo, T.; Ikawa, T.; Kume, A.; Maegawa,
T.; Monguchi, Y. Partial hydrogenation of alkynes to cis-ole-
fins by using a novel Pd(0)-polyethyleneimine catalyst. Chem.
Eur. J. 2008, 14, 5109-5111.
23. Yabe, Y.; Sawama, Y.; Monguchi, Y.; Sajiki, H. New aspect of
chemoselective hydrogenation utilizing heterogeneous palla-
dium catalysts supported by nitrogen- and oxygen-containing
macromolecules. Catal. Sci. Technol. 2014, 4, 260-271.
24. Veerakumar, P.; Velayudham, M.; Lu, K.-L.; Rajagopal, S. Sil-
ica-supported pei capped nanopalladium as potential catalyst
in suzuki, heck and sonogashira coupling reactions. Appl.
Catal. A 2013, 455, 247-260.
25. Spee, M. P. R.; Boersma, J.; Meijer, M. D.; Slagt, M. Q.; Koten,
G. v.; Geus, J. W. Selective liquid-phase semihydrogenation of
functionalized acetylenes and propargylic alcohols with silica-
supported bimetallic palladium-copper catalysts. J. Org.
Chem. 2001, 66, 1647-1656.
26. Opanasenko, M.; Štěpnička, P.; Čejka, J. Heterogeneous Pd
catalysts supported on silica matrices. RSC Adv. 2014, 4, 65137-
65162.
27. Mitsudome, T.; Takahashi, Y.; Ichikawa, S.; Mizugaki, T.;
Jitsukawa, K.; Kaneda, K. Metal-ligand core-shell nanocompo-
site catalysts for the selective semihydrogenation of alkynes.
Angew. Chem. Int. Ed. 2013, 52, 1481-1485.
28. da Silva, F. P.; Fiorio, J. L.; Rossi, L. M. Tuning the catalytic
activity and selectivity of Pd nanoparticles using ligand-mod-
ified supports and surfaces. ACS Omega 2017, 2, 6014-6022.
29. Long, W.; Brunelli, N. A.; Didas, S. A.; Ping, E. W.; Jones, C.
W. Aminopolymer–silica composite-supported Pd catalysts
for selective hydrogenation of alkynes. ACS Catal. 2013, 3,
1700-1708.
9
Au@SiO2
yolk/shell structure for catalytic reduction of p-ni-
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
trophenol. Adv. Mater. 2008, 20, 1523-1528.
39. Qiao, Z. A.; Zhang, P.; Chai, S. H.; Chi, M.; Veith, G. M.;
Gallego, N. C.; Kidder, M.; Dai, S. Lab-in-a-shell: Encapsulat-
ing metal clusters for size sieving catalysis. J. Am. Chem. Soc.
2014, 136, 11260-11263.
40. Liu, J.; Yang, H. Q.; Kleitz, F.; Chen, Z. G.; Yang, T.; Strounina,
E.; Lu, G. Q. M.; Qiao, S. Z. Yolk-shell hybrid materials with a
periodic mesoporous organosilica shell: Ideal nanoreactors for
selective alcohol oxidation. Adv. Funct. Mater. 2012, 22, 591-
599.
41. Peng, J.; Lan, G.; Guo, M.; Wei, X.; Li, C.; Yang, Q. Fabrication
of efficient hydrogenation nanoreactors by modifying the
freedom of ultrasmall platinum nanoparticles within yolk-
shell nanospheres. Chem. Eur. J. 2015, 21, 10490-10496.
42. Subramanian, V.; Cheng, K.; Lancelot, C.; Heyte, S.; Paul, S.;
Moldovan, S.; Ersen, O.; Marinova, M.; Ordomsky, V. V.;
Khodakov, A. Y. Nanoreactors: An efficient tool to control the
chain-length distribution in fischer–tropsch synthesis. ACS
Catal. 2016, 6, 1785-1792.
43. Kuwahara, Y.; Ando, T.; Kango, H.; Yamashita, H. Palladium
nanoparticles encapsulated in hollow titanosilicate spheres as
an ideal nanoreactor for one-pot oxidation. Chem. Eur. J. 2017,
23, 380-389.
44. Fang, X.; Chen, C.; Liu, Z.; Liu, P.; Zheng, N. A cationic surfac-
tant assisted selective etching strategy to hollow mesoporous
silica spheres. Nanoscale 2011, 3, 1632-1639.
45. Kuwahara, Y.; Sumida, Y.; Fujiwara, K.; Yamashita, H. Facile
synthesis of yolk-shell nanostructured photocatalyst with im-
proved adsorption properties and molecular-sieving proper-
ties. ChemCatChem 2016, 8, 2781-2788.
46. Kuwahara, Y.; Furuichi, N.; Seki, H.; Yamashita, H. One-pot
synthesis of molybdenum oxide nanoparticles encapsulated in
hollow silica spheres: An efficient and reusable catalyst for
epoxidation of olefins. J. Mater. Chem. A 2017, 5, 18518-18526.
47. Yang, H.; Zhang, L.; Zhong, L.; Yang, Q.; Li, C. Enhanced co-
operative activation effect in the hydrolytic kinetic resolution
of epoxides on [Co(salen)] catalysts confined in nanocages.
Angew. Chem. Int. Ed. 2007, 46, 6861-6865.
48. Yang, Q.; Han, D.; Yang, H.; Li, C. Asymmetric catalysis with
metal complexes in nanoreactors. Chem. Asian J. 2008, 3, 1214-
1229.
49. Qiao, Z. A.; Huo, Q.; Chi, M.; Veith, G. M.; Binder, A. J.; Dai,
S. A "ship-in-a-bottle" approach to synthesis of polymer
dots@silica or polymer dots@carbon core-shell nanospheres.
Adv. Mater. 2012, 24, 6017-21.
50. Yin, Y.; Chen, M.; Zhou, S.; Wu, L. A general and feasible
method for the fabrication of functional nanoparticles in mes-
oporous silica hollow composite spheres. J. Mater. Chem. 2012,
22, 11245-11251.
51. Yue, Q.; Zhang, Y.; Wang, C.; Wang, X.; Sun, Z.; Hou, X.-F.;
Zhao, D.; Deng, Y. Magnetic yolk–shell mesoporous silica mi-
crospheres with supported au nanoparticles as recyclable
high-performance nanocatalysts. J. Mater. Chem. A 2015, 3,
4586-4594.
30. Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W.; Xing, X.; Lu, G. Q.
Yolk/shell nanoparticles: New platforms for nanoreactors,
drug delivery and lithium-ion batteries. Chem. Commun. 2011,
47, 12578-12591.
31. Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: Syn-
thesis, biocompatibility and drug delivery. Adv. Mater. 2012,
24, 1504-34.
32. Wu, S. H.; Mou, C. Y.; Lin, H. P. Synthesis of mesoporous silica
nanoparticles. Chem. Soc. Rev. 2013, 42, 3862-3875.
33. Perez-Lorenzo, M.; Vaz, B.; Salgueirino, V.; Correa-Duarte, M.
A. Hollow-shelled nanoreactors endowed with high catalytic
activity. Chem. Eur. J. 2013, 19, 12196-12211.
34. Li, Y.; Shi, J. Hollow-structured mesoporous materials: Chem-
ical synthesis, functionalization and applications. Adv. Mater.
2014, 26, 3176-205.
ACS Paragon Plus Environment