Page 7 of 9
Journal of the American Chemical Society
Int. Ed. 2009, 48, 7604; (e) Xuan, Y.; Nie, S.; Dong, L.; Zhang,
1
J.; Yan, M. Org. Lett. 2009, 11, 1583; (f) Hatano, M.; Horibe, T.;
Ishihara, K. Org. Lett. 2010, 12, 3502; (g) Hatano, M.; Moriyama,
K.; Maki, T.; Ishihara, K. Angew. Chem. Int. Ed. 2010, 49, 3823;
(h) Chauhan, P.; Chimni, S. S. Adv. Synth. Catal. 2011, 353,
Conclusion
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
In conclusion, we determined that αꢀhalogenated 7ꢀazaindoline
amides were amenable to catalytic enolization and subsequent
enantioselective addition to Nꢀcarbamoylimines. All αꢀhalo
substituents, F, Cl, Br, and I, were successfully accommodatꢀ
ed; considering that αꢀhalogenated monocarbonyl compounds
have been underexplored as latent enolates, the observed
broad applicability of αꢀhalogenated 7ꢀazaindoline amides is
noteworthy. The divergent diastereoselectivity depending on
the substitution pattern of the aromatic imines was rationalized
by the plausible open transition state models. Divergent funcꢀ
tional group interconversion of the 7ꢀazaindoline moiety of the
Mannich product as well as Nꢀacylation without dehalogenaꢀ
tion highlight the synthetic utility of the reaction to access
enantioenriched halogenated building blocks. Further develꢀ
opments toward an aldol reaction manifold and the application
to natural product synthesis are underway.
3
203; (i) Liu, W. B.; Reeves, C. M.; Stoltz, B. M. J. Am. Chem.
Soc. 2013, 135, 17298; (j) Hong, S.; Kim, M.; Jung, M.; Ha, M.
W.; Lee, M.; Park, Y.; Kim, M. H.; Kim, T. S.; Lee, J.; Park, H.
G. Org Biomol Chem 2014, 12, 1510; (k) Bae, H. Y.; Song, C. E.
ACS Catalysis 2015, 5, 3613.
(a) Noole, A.; Järving, I.; Werner, F.; Lopp, M.; Malkov, A.;
Kanger, T. Org. Lett. 2012, 14, 4922; (b) Dou, X.; Yao, W.;
Zhou, B.; Lu, Y. Chem. Commun. 2013, 49, 9224.
3
.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
4. Sauer, S. J.; Garnsey, M. R.; Coltart, D. M. J. Am. Chem. Soc.
2010, 132, 13997.
5
.
(a) Yost, J. M.; Alfie, R. J.; Tarsis, E. M.; Chong, I.; Coltart, D.
M. Chem. Commun. 2011, 47, 571; (b) Alfie, R. J.; Truong, N.;
Yost, J. M.; Coltart, D. M. Tetrahedron Lett. 2017, 58, 185.
Quintard, A.; Alexakis, A. Chem. Commun. 2010, 46, 4085
6
.
7. Shibatomi, K.; Yamamoto, H. Angew. Chem. Int. Ed. 2008, 47,
796.
Trost, B. M.; Saget, T.; Hung, C.ꢀI. J. Angew. Chem. Int. Ed.
017, 56, 2440.
5
8
9
.
.
2
(a) Weidner, K.; Kumagai, N.; Shibasaki, M. Angew. Chem. Int.
Ed. 2014, 53, 6150; (b) Yin, L.; Brewitz, L.; Kumagai, N.;
Shibasaki, M. J. Am. Chem. Soc. 2014, 136, 17958; (c) Weidner,
K.; Sun, Z.; Kumagai, N.; Shibasaki, M. Angew. Chem. Int. Ed.
ASSOCIATED CONTENT
Supporting Information
Experimental details and spectroscopic data of new comꢀ
pounds. This material is available free of charge via the
Internet at http://pubs.acs.org.
2
015, 54, 6236; (d) Arteaga, F. A.; Liu, Z.; Brewitz, L.; Chen, J.;
Sun, B.; Kumagai, N.; Shibasaki, M. Org. Lett. 2016, 18, 2391.
10. (a) Kanai, M.; Kato, N.; Ichikawa, E.; Shibasaki, M. Synlett 2005,
1491; (b) Yamamoto, H.; Futatsugi, K. Angew. Chem. Int. Ed.
2005, 44, 1924; (c) Paull, D. H.; Abraham, C. J.; Scerba, M. T.;
AldenꢀDanforth, E.; Lectka, T. Acc. Chem. Res. 2008, 41, 655;
Crystallographic data for antiꢀ6bꢀCl (CIF)
Crystallographic data for synꢀ6dꢀCl (CIF)
Crystallographic data for antiꢀ6mꢀCl (CIF)
Crystallographic data for antiꢀ6rꢀCl (CIF)
Crystallographic data for synꢀ6ahꢀCl (CIF)
Crystallographic data for synꢀ6dꢀBr (CIF)
Experimental procedures and spectral data (PDF)
(
4
d) Kumagai, N.; Shibasaki, M. Angew. Chem. Int. Ed. 2011, 50,
760; (e) Peters, R., Cooperative Catalysis. WileyꢀVCH:
Weinheim, 2015.
11. For reviews on Mannich reactions, see: (a) Marques, M. M.
Angew. Chem. Int. Ed. 2006, 45, 348; (b) Ting, A.; Schaus, S. E.
Eur. J. Org. Chem. 2007, 5797; (c) Verkade, J. M.; van Hemert,
L. J.; Quaedflieg, P. J.; Rutjes, F. P. Chem. Soc. Rev. 2008, 37,
AUTHOR INFORMATION
Corresponding Author
2
9; (d) Arrayas, R. G.; Carretero, J. C. Chem. Soc. Rev. 2009, 38,
1940; (e) Kobayashi, S.; Mori, Y.; Fossey, J. S.; Salter, M. M.
Chem. Rev. 2011, 111, 2626.
12. Bulk purchase of 3 or 4 even lowers the cost shown in Scheme 1.
13. Absolute configuration of antiꢀ6bꢀCl was determined by Xꢀray
crystallographic analysis. That of synꢀ6aꢀCl was deduced from
synꢀ6dꢀCl (determined by Xꢀray crystallographic analysis) by
analogy.
4. The use of the corresponding NꢀCbz imine under otherwise
identical conditions led to lower stereoselectivity (83% isolated
yield, dr 55/45, 64% ee/77% ee).
5. Cu(I)/L2 complex was used in NMR analysis to avoid overlapped
peaks.
6. Brewitz, L.; Arteaga, F. A.; Yin, L.; Alagiri, K.; Kumagai, N.;
Shibasaki, M. J. Am. Chem. Soc. 2015, 137, 15929.
7. For catalytic asymmetric Mannichꢀtype reactions, only highly
ACKNOWLEDGMENT
This work was financially supported by ACTꢀC (JPMJCR12YO)
from JST, and KAKENHI (25713002, JP16H01043 in Precisely
Designed Catalysts with Customized Scaffolding) from JSPS. NK
thanks The Naito Foundation for financial support. Dr. Tomoyuki
Kimura is gratefully acknowledged for the Xꢀray crystallographic
analysis. We thank Dr. Ryuichi Sawa, Ms. Yumiko Kubota, and
Dr. Kiyoko Iijima for the NOE analysis.
1
1
1
1
REFERENCES
acidic
αꢀfluoroꢀβꢀketoesters,
αꢀfluoroꢀβꢀketoimides,
αꢀ
fluoromalonates were used; see (a) Han, X.; Kwiatkowski, J.;
Xue, F.; Huang, K.ꢀW.; Lu, Y. Angew. Chem. Int. Ed. 2009, 48,
1. (a) Gribble, G. W. Acc. Chem. Res. 1998, 31, 141; (b) Gribble, G.
W. Chem. Soc. Rev. 1999, 28, 335; (c) Gribble, G. W.
Chemosphere 2003, 52, 289; (d) Gribble, G. W. Heterocycles
7
604. (b) Pan, Y.; Zhao, Y.; Ma, T.; Yang, Y.; Liu, H.; Jiang, Z.;
Tan, C.ꢀH. Chem. Eur. J. 2010, 16, 779. (c) Yoon, S. J.; Kang, Y.
K.; Kim, D. Y. Synlett 2011, 420. (d) Kang, Y. K.; Yoon, S. J.;
Kim, D. Y. Bull. Korean Chem. Soc. 2011, 32, 1195. (e) Kang, Y.
K.; Kim, D. Y. Tetrahedron Lett. 2011, 52, 2356. (f) Zhao, Y.;
Pan, Y.; Liu, H.; Yang, Y.; Jiang, Z.; Tan, C.ꢀH. Chem. Eur. J.
2
012, 84, 157; (e) Wang, L.; Zhou, X.; Fredimoses, M.; Liao, S.;
Liu, Y. RSC Adv. 2014, 4, 57350; (f) Gribble, G. W.
Environmental Chemistry 2015, 12, 396; (g) Chung, W. J.;
Vanderwal, C. D. Angew. Chem. Int. Ed. 2016, 55, 4396.
2. (a) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J.
Am. Chem. Soc. 2005, 127, 119; (b) Nichols, P. J.; DeMattei, J.
A.; Barnett, B. R.; LeFur, N. A.; Chuang, T.ꢀH.; Piscopio, A. D.;
Koch, K. Org. Lett. 2006, 8, 1495; (c) Andres, J. M.; Manzano,
R.; Pedrosa, R. Chem. Eur. J. 2008, 14, 5116; (d) Han, X.;
Kwiatkowski, J.; Xue, F.; Huang, K. W.; Lu, Y. Angew. Chem.
2
011, 17, 3571. (g) Wang, H.ꢀY.; Zhang, K.; Zheng, C.ꢀW.; Chai,
Z.; Cao, D.ꢀD.; Zhang, J.ꢀX.; Zhao, G. Angew. Chem. Int. Ed.
015, 54, 1775. (h) Cosimi, E.; Engl, O. D.; Saadi, J.; Ebert, M.ꢀ
O.; Wennemers, H. Angew. Chem. Int. Ed. 2016, 55, 13127.
18. In the case of αꢀCF ꢀαꢀF 7ꢀazaindoline amide, the αꢀF substituent
located close to azaindoline upon complexation with a Cu(I)
2
3
ACS Paragon Plus Environment