10.1002/anie.202109995
Angewandte Chemie International Edition
COMMUNICATION
[16]
[17]
Y. Feng, N.-B. Xie, W.-B. Tao, J.-H. Ding, X.-J. You, C.-J. Ma, X.
Zhang, C. Yi, X. Zhou, B.-F. Yuan, Y.-Q. Feng, CCS Chemistry
2021, 3, 994-1008.
K. Iwan, R. Rahimoff, A. Kirchner, F. Spada, A. S. Schröder, O.
Kosmatchev, S. Ferizaj, J. Steinbacher, E. Parsa, M. Müller, T.
Carell, Nat. Chem. Biol. 2018, 14, 72-78.
F. R. Traube, S. Schiffers, K. Iwan, S. Kellner, F. Spada, M. Müller,
T. Carell, Nat. Protoc. 2019, 14, 283-312.
A. S. Schröder, O. Kotljarova, E. Parsa, K. Iwan, N. Raddaoui, T.
Carell, Org. Lett. 2016, 18, 4368-4371.
A. S. Schröder, E. Parsa, K. Iwan, M. Wallner, S. Serdjukow, T.
Carell, Chem. Commun. 2016, 52, 14361-14364.
R. Rahimoff, O. Kosmatchev, A. Kirchner, T. Pfaffeneder, F.
Spada, V. Brantl, M. Müller, T. Carell, J. Am. Chem. Soc. 2017,
139, 10359-10364.
M. Zauri, G. Berridge, M.-L. Thézénas, K. M. Pugh, R. Goldin, B.
M. Kessler, S. Kriaucionis, Nature 2015, 524, 114-118.
Z. Zawada, A. Tatar, P. Mocilac, M. Buděšínský, T. Kraus, Angew.
Chem. Int. Ed. 2018, 57, 9891-9895.
general, stem cells show an about ten times higher decarboxylation
activity than somatic cells, which underpins the potential epigenetic
importance of the process.
In summary, the presented data show that next to deformylation of
fdC, we also need to consider decarboxylation of cadC as a
mechanism for active demethylation. All further efforts now need to be
concentrated at finding the cellular entities or circumstances that
enable these C-C bond cleavage reactions. Although the here
reported data clearly point to the existence of decarboxylation, we
need to emphasize that cells are complex systems and we feed an
unnatural compound. Without clear identification of the biological
entity responsible for the process, we cannot completely rule out that
unknown processes other than intragenomic decarboxylation are
responsible for the measured data. During the review process of this
manuscript Feng and coworkers showed an incorporation of the F-
carboxylcytidine as a nucleoside and interestingly managed to detect
the decarboxylation of cadC to dC much earlier on.[29]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
F. Yuan, Y. Bi, J.-Y. Zhang, Y.-L. Zhou, X.-X. Zhang, C.-X. Song,
RSC Adv. 2019, 9, 29010-29014.
W. J. Lowary PT, J Mol. Biol. 1998, 276, 19-42.
E. Korytiaková, E. Kamińska, M. Müller, T. Carell, Angew. Chem.
Int. Ed. 2021, 60, 16869-16873.
[25]
[26]
[27]
[28]
A. Parry, S. Rulands, W. Reik, Nat. Rev. Genet. 2021, 22, 59-66.
S. Takahashi, Kobayashi, S., Hiratani, I., CMLS 2018, 75, 1191-
1203.
Acknowledgements
[29]
Y. Feng, J.-J. Chen, N.-B. Xie, J.-H. Ding, X.-J. You, W.-B. Tao, X.
Zhang, C. Yi, X. Zhou, B.-F. Yuan, Y.-Q. Feng, Chem. Sci. 2021.
We thank the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) for financial support via SFB1309 (PID
325871075) and SFB1361 (PID 393547839). This project has
received funding from the European Research Council (ERC) under
the European Union's Horizon 2020 research and innovation
programme (grant agreement n° EPiR 741912). Additional funding
was provided by the Volkswagen Foundation (EvoRib) and the DFG
priority program SPP1784 (PID 277203618).
Keywords: epigenetics; carboxylcytidine; decarboxylation; C-C
bond cleavage; active demethylation
[1]
T. Carell, C. Brandmayr, A. Hienzsch, M. Müller, D. Pearson, V.
Reiter, I. Thoma, P. Thumbs, M. Wagner, Angew. Chem. Int. Ed.
2012, 51, 7110-7131.
[2]
[3]
S. Kriaucionis, N. Heintz, Science 2009, 324, 929-930.
M. Tahiliani, K. P. Koh, Y. Shen, W. A. Pastor, H. Bandukwala, Y.
Brudno, S. Agarwal, L. M. Iyer, D. R. Liu, L. Aravind, A. Rao,
Science 2009, 324, 930-935.
[4]
[5]
Z. Li, H. Dai, S. N. Martos, B. Xu, Y. Gao, T. Li, G. Zhu, D. E.
Schones, Z. Wang, Genome Biol. 2015, 16.
C.-C. Chen, K.-Y. Wang, C.-K. J. Shen, J. Biol. Chem 2013, 288,
9084-9091.
[6]
[7]
[8]
C. Luo, P. Hajkova, J. R. Ecker, Science 2018, 361, 1336-1340.
M. Okano, D. W. Bell, D. A. Haber, E. Li, Cell 1999, 99, 247-257.
Y. F. He, B. Z. Li, Z. Li, P. Liu, Y. Wang, Q. Tang, J. Ding, Y. Jia,
Z. Chen, L. Li, Y. Sun, X. Li, Q. Dai, C. X. Song, K. Zhang, C. He,
G. L. Xu, Science 2011, 333, 1303-1307.
[9]
L. S. Pidugu, Q. Dai, S. S. Malik, E. Pozharski, A. C. Drohat, J.
Am. Chem. Soc. 2019, 141, 18851-18861.
[10]
[11]
[12]
[13]
H. E. Krokan, M. Bjoras, Cold Spring Harb. Perspect. Biol. 2013, 5,
a012583-a012583.
A. J. Wossidlo M, Sebastiano V, Lepikhov K, Boiani M, Reinhardt
R, Schöler H, Walter J., EMBO J. 2010, 29, 1877-1888.
S. Schiesser, B. Hackner, T. Pfaffeneder, M. Müller, C. Hagemeier,
M. Truss, T. Carell, Angew. Chem. Int. Ed. 2012, 51, 6516-6520.
S. Schiesser, T. Pfaffeneder, K. Sadeghian, B. Hackner, B.
Steigenberger, A. S. Schröder, J. Steinbacher, G. Kashiwazaki, G.
Höfner, K. T. Wanner, C. Ochsenfeld, T. Carell, J. Am. Chem. Soc.
2013, 135, 14593-14599.
[14]
[15]
G. Song, G. Wang, X. Luo, Y. Cheng, Q. Song, J. Wan, C. Moore,
H. Song, P. Jin, J. Qian, H. Zhu, Nat. Commun. 2021, 12, 795.
Z. Liutkeviciute, E. Kriukiene, J. Licyte, M. Rudyte, G.
Urbanaviciute, S. Klimasauskas, J. Am. Chem. Soc. 2014, 136,
5884-5887.
This article is protected by copyright. All rights reserved.