C O M M U N I C A T I O N S
Table 3. Mannich-type Reaction Using PMI Sc(OTf)3
Acknowledgment. This work was partially supported by a
Grant-in-Aid for Scientific Research from Japan Society of the
Promotion of Science (JSPS).
Supporting Information Available: Tables of details in Mu-
kaiyama aldol, Mannich-type, and Michael reactions, and experimental
details (PDF). This material is available free of charge via Internet at
entry
R1
X
R2
R3
Y
time (h)
yield (%)
1
Ph
Ph
Ph
NHBz
NHBz
Ph
Me
Me
Me
Me
H
Me
Me
Me
Me
H
OMe
SEt
OMe
OMe
Ph
3
4
24
24
3
96b,c
97
2a
3a
4a
5a
2-thienyl
PhCH2CH2
EtO2C
80
References
73
Ph
80
(1) (a) Combinatorial Chemistry: Synthesis, Analysis, Screening; Jung, G.,
Ed.; Wiley-VCH: Weinheim, Germany, 1999. (b) Seneci, P. Solid-Phase
Synthesis and Combinatorial Technologies; Wiley: New York, 2000. (c)
Handbook of Combinatorial Chemistry; Nicolau, K. C., Hanko, R.,
Hartwig, W., Eds.; Wiley: New York, 2002. (d) Burke, M. D.; Berger,
E. M.; Schreiber, S. L. Science 2003, 302, 613. (e) Dolle, R. E. J. Comb.
Chem. 2003, 5, 693. (f) Kobayashi, S. Chem. Soc. ReV. 1999, 28, 1.
(2) (a) Kaldor, S. W.; Siegel, M. G. Curr. Opin. Chem. Biol. 1997, 1, 101. (b)
Booth, R. J.; Hodges, J. C. Acc. Chem. Res. 1999, 32, 18. (c) Thompson,
L. A. Curr. Opin. Chem. Biol. 2000, 4, 324. (d) Kirschning, A.; Mon-
enschein, H.; Wittenberg, R. Angew. Chem., Int. Ed. 2001, 40, 650. (e)
Wipf, P.; Wang, X. J. Comb. Chem. 2002, 4, 656. (f) Vickerstaffe, E.;
Warrington, B. H.; Ladlow, M.; Ley, S. V. J. Comb. Chem. 2004, 6, 332.
(3) (a) MacNamara, C. A.; Dixon, M. J.; Bradley, M. Chem. ReV. 2002, 102,
3275. (b) Bra¨se, S.; Lauterwasser, F.; Ziegert, R. E. AdV. Synth. Catal.
2003, 345, 869. (c) Benaglia, M.; Puglisi, A.; Cozzi, F. Chem. ReV. 2003,
103, 3401.
a With 5 mol % of PMI Sc(OTf)3. b Corrected yield. Half of the crude
compound was used for ICP analysis. No Sc leaching was observed (ND
< 0.05%). c Second use, 99%; third use, 97%.
Table 4. Michael Reaction Using PMI Sc(OTf)3
(4) (a) SelectiVities in Lewis Acid Promoted Reaction; Schinzer, D., Ed.;
Kluwer Academic Publishers: Dordrecht, The Netherlands, 1989. (b)
Lewis Acids in Organic Synthesis; Yamamoto, H., Ed.; Wiley-VHC:
Weinheim, Germany, 2000.
a Reaction conditions: PMI Sc(OTf)3 (5 mol %), acceptor (2.0 equiv)
in CH3CN at room temperature. b Corrected yield. Half of the crude
compound was used for ICP analysis. No Sc leaching was observed (ND
< 0.05%). c Second use, 94%; third use, 92%.
(5) For recent representative reports of solid-supported Lewis acid catalysts,
see: (a) Khadilkar, B. M.; Borkar, S. D. Tetrahedron Lett. 1997, 38, 1641.
(b) Katsuki, K.; Arimura, K. Tetrahedron Lett. 1997, 38, 7583. (c)
Khadilkar, B. M.; Borkar, S. D. J. Chem. Technol. Biotechnol. 1998, 71,
209. (d) Nishimura, T.; Ohtaka, S.; Kimura, A.; Hayama, E.; Haseba, Y.;
Takeuchi, H.; Uemura, S. Appl. Catal. A 2000, 194-195, 415. (e) Jyothi,
T. M.; Kaliya, M. L.; Landau, M. V. Angew. Chem., Int. Ed. 2001, 40,
2881. (f) Hu, X.; Chuah, G. K.; Jaenicke, S. Appl. Catal. A 2001, 217, 1.
(g) Qin, Y.; Cheng, G.; Sundararaman, A.; Ja¨kle, F. J. Am. Chem. Soc.
2002, 124, 12672. (h) D´ıaz-Oritz, A.; de la Hoz, A.; Moreno, A.; Sa´nchez-
Migallo´n, A.; Valiente, G. Green Chem. 2002, 4, 339. (i) Sreekanth, P.;
Kim, S.-W.; Hyeon, T.; Kim, B. M. AdV. Synth. Catal. 2003, 345, 936.
(j) Yamazaki, O.; Hao, X.; Yoshida, A.; Nishikido, J. Tetrahedron Lett.
2003, 44, 8791. (k) Choudary, B. M.; Sridhar, Ch.; Sateesh, M.; Sreedhar,
B. J. Mol. Catal. A: Chem. 2004, 212, 237. (l) Corma, A.; Renz, M.
Chem. Commun. 2004, 550. (m) Liu, J.; Yin, D.; Yin, D.; Fu, Z.; Li, Q.;
Lu, G. J. Mol. Catal. A: Chem. 2004, 209, 171. (n) Kawabata, T.; Kato,
M.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Chem.sEur. J. 2005, 11, 288.
(6) (a) Kobayashi, S. Synlett 1994, 689. (b) Kobayashi, S. Eur. J. Org. Chem.
1999, 15. (c) Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W. W.-L.
Chem. ReV. 2002, 102, 2227.
(7) (a) Kobayashi, S.; Nagayama, S. J. Org. Chem. 1996, 61, 2256. (b)
Kobayashi, S.; Nagayama, S. J. Am. Chem. Soc. 1996, 118, 8977. (c)
Kobayashi, S.; Nagayama, S. J. Am. Chem. Soc. 1998, 120, 2985. (d)
Kobayashi, S.; Nagayama, S. Angew. Chem., Int. Ed. 2000, 39, 567. (e)
Reetz, M. T.; Giebel. D. Angew. Chem., Int. Ed. 2000, 39, 2498. (f) Gu,
W.; Zhou, W.-J.; Gin, D. L. Chem. Mater. 2001, 13, 1949. (g) Perles, J.;
Iglesias, M.; Valero, C. R.; Snejko, N. Chem. Commun. 2003, 346. (h)
Kawabata, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc.
2003, 125, 10486. (i) Iimura, S.; Manabe, K.; Kobayashi, S. Tetrahedron
2004, 60, 7673.
confirmed by XRF and ICP analyses that no leaching of Sc
occurred. On the other hand, PMI Sc(OTf)3 was found to be more
effective (entry 5). We tested other substrates, and in all cases,
PMI Sc(OTf)3 had higher catalytic activity than PI Sc(OTf)3.12 The
higher activity of PMI Sc(OTf)3 compared with that of PI Sc(OTf)3
may be ascribed to construct the larger catalytic surface area in
PMI Sc(OTf)3 by formation of spherical micelles shown in Figure
1. Moreover, PMI Sc(OTf)3 showed higher activity than MC Sc-
(OTf)3, previously developed by our group.7c,12 It is noted that these
catalysts were recovered quantitatively by simple filtration and that
the same levels of yields were obtained even after the third use.
PMI Sc(OTf)3 was successfully used as a catalyst in other re-
actions, such as Mannich-type13 and Michael14 reactions (Tables 3
and 4). Although it is well-known that most Lewis acids are trapped
and sometimes decomposed by basic compounds, PMI Sc(OTf)3
was effective for the activation of imines to form amines, and no
Sc leaching was observed (Table 3). PMI Sc(OTf)3 was also
available for the reaction of less reactive acylhydrazones (entries
3 and 4).12,15 Moreover, it was confirmed that PMI Sc(OTf)3 was
an effective catalyst for Michael reactions (Table 4), one of the
powerful methods for the synthesis of 1,5-dioxo units.14 In the
presence of 5 mol % of PMI Sc(OTf)3, the desired Michael reactions
proceeded smoothly,12,16 and again, no Sc leaching was observed.
It is noted that, to our knowledge, the highest catalytic activity in
terms of TON (>7500) has been attained in the Michael reaction.
In summary, we have developed a novel immobilization tech-
nique for Sc(OTf)3, a polymer-micelle incarcerated (PMI) method.
To the best of our knowledge, this is the first example of
immobilization of Lewis acids utilizing polymer micelles. PMI Sc-
(OTf)3 is highly active in several fundamental carbon-carbon bond-
forming reactions. The catalyst is recovered quantitatively by simple
filtration and reused several times without loss of catalytic activity,
and no Sc leaching was observed in all reactions (<0.1 ppm).17 In
addition, several solvents are available, and these aspects are suitable
for HTOS. The PMI method is operationally simple and might be
applied to a wide range of Lewis acid catalysts. Further study into
the immobilization of other Lewis acid catalysts is now in progress.
(8) (a) Akiyama, R.; Kobayashi, S. J. Am. Chem. Soc. 2003, 125, 3412. (b)
Okamoto, K.; Akiyama, R.; Kobayashi, S. J. Org. Chem. 2004, 69, 2871.
(c) Okamoto, K.; Akiyama, R.; Kobayashi, S. Org. Lett. 2004, 6, 1987.
(d) Okamoto, K.; Akiyama, R.; Yoshida, H.; Yoshida, T.; Kobayashi, S.
J. Am. Chem. Soc. 2005, 127, 2125.
(9) The loading level of the polymer-supported Sc(OTf)3 was determined by
XRF analysis. See Supporting Information for details.
(10) Control experiments strongly suggested that the tetraethyleneglycol
moieties in copolymer 1 played an important role in the immobilization
of Sc(OTf)3. See Supporting Information for details.
(11) (a) Mukaiyama, T.; Banno, K.; Narasaka, K. J. Am. Chem. Soc. 1974,
96, 7503. (b) Mukaiyama. T. Org. React. 1982, 28, 203. (c) Mahrwald,
R. Chem. ReV. 1999, 99, 1095.
(12) Details for the substrate scope are shown in the Supporting Information.
(13) Kobayashi, S.; Araki, M.; Ishitani, H.; Nagayama, S.; Hachiya, I. Synlett
1995, 233.
(14) Jung, M. E. In ComprehensiVe Organic Synthesis: Trost, B. M., Fleming,
I., Eds.; Pergamon: Oxford, 1991; Vol. 4.
(15) (a) Oyamada, H.; Kobayashi, S. Synlett 1998, 249. (b) Manabe, K.; Oya-
mada, H.; Sugita, K.; Kobayashi, S. J. Org. Chem. 1999, 64, 8054. (c)
Okitsu, O.; Oyamada, H.; Furuta, T.; Kobayashi, S. Heterocycles 2000,
52, 1143.
(16) PMI Sc(OTf)3 is also available and reusable in CH2Cl2 or toluene.
(17) Metal leaching is a serious issue especially in pharmaceutical industry.
However, most literature of immobilized Lewis acids ignores this important
aspect. As far as we know, this is the lowest leaching level so far reported.
JA053176F
9
J. AM. CHEM. SOC. VOL. 127, NO. 38, 2005 13097