Based on the experiments mentioned above, we proposed
a pathway for VO(acac)2 catalyzed oxidation of HMF with
molecular oxygen (Scheme 3). Both oxidation of hydroxymethyl
group and C–C bond cleavage took place simultaneously. When
the oxidation was performed under 0.1 MPa O2, the oxidation
of HMF to DFF prevailed (route b). In this work, the C–C bond
adjacent to the hydroxymethyl group was easily broken under 1.0
MPa O2 atmosphere; after the cleavage of C–C bond, a second
a-hydroxy ketone might form on the other side via resonance
(ESI† Fig. S9). Then further oxidation would lead to MA as the
main product (route a). Oxidation of the hydroxymethyl group
to an aldehyde group also occurred; however, DFF was relatively
stable against further oxidation into FDCA or MA.
2 (a) V. Guliants and M. A. Carreon, Vanadium-phosphorus-oxides:
From fundamentals of n-butane oxidation to synthesis of new phases,
in, Catalysis, ed., J. J. Spivey, vol. 18, The Royal Society of Chemistry,
Cambridge, 2005, pp.1–45; (b) G. Centi, F. Trifiro, J. R. Ebner and
V. M. Franchetti, Chem. Rev., 1988, 88, 55–80 and references cited
therein.
3 (a) D. R. Dodds and R. A. Gross, Science, 2007, 318, 1250–1251;
(b) B. Kamm, Angew. Chem., Int. Ed., 2007, 46, 5056–5058; (c) J. N.
Chheda, G. W. Huber and J. A. Dumesic, Angew. Chem., Int. Ed.,
2007, 46, 7164–7183; (d) A. Corma, S. Iborra and A. Velty, Chem.
Rev., 2007, 107, 2411–2502; (e) C. H. Christensen, J. Rass-Hansen, C.
C. Marsden, E. Taarning and K. Egeblad, ChemSusChem, 2008, 1,
283–289; (f) N. Dimitratos, J. A. Lopez-Sanchez and G. J. Hutchings,
Top. Catal., 2009, 52, 258–268; (g) P. Gallezot, Green Chem., 2007, 9,
295–302; (h) J. J. Bozell and G. R. Petersen, Green Chem., 2010, 12,
539–554.
4 (a) Y. Roman-Leshkov, J. N. Chheda and J. A. Dumesic, Science,
2006, 312, 1933–1937; (b) H. B. Zhao, J. E. Holladay, H. Brown
and Z. C. Zhang, Science, 2007, 316, 1597–1600; (c) X. H. Qi, M.
Watanabe, T. M. Aida and R. L. Smith, Green Chem., 2008, 10,
799–805; (d) M. Mascal and E. B. Nikitin, Green Chem., 2010, 12,
370–373; (e) S. Q. Hu, Z. F. Zhang, J. L. Song, Y. X. Zhou and B. X.
Han, Green Chem., 2009, 11, 1746–1749; (f) X. L. Tong and Y. D. Li,
ChemSusChem, 2010, 3, 350–355; (g) T. Stahlberg, M. G. Sorensen
and A. Riisager, Green Chem., 2010, 12, 321–325; (h) G. Yong, Y.
G. Zhang and J. Y. Ying, Angew. Chem., Int. Ed., 2008, 47, 9345–
9348; (i) J. B. Binder and R. T. Raines, J. Am. Chem. Soc., 2009, 131,
1979–1985.
5 W. Partenheimer and V. V. Grushin, Adv. Synth. Catal., 2001, 343,
102–111.
6 (a) C. Carlini, P. Patrono, A. M. R. Galletti, G. Sbrana and V. Zima,
Appl. Catal., A, 2005, 289, 197–204; (b) O. C. Navarro, A. C. Canos
and S. I. Chornet, Top. Catal., 2009, 52, 304–314; (c) G. A. Halliday,
R. J. Young and V. V. Grushin, Org. Lett., 2003, 5, 2003–2005.
7 (a) M. Kroger, U. Prusse and K. D. Vorlop, Top. Catal., 2000, 13,
237–242; (b) M. A. Lilga, R. T. Hallen and M. Gray, Top. Catal.,
2010, 53, 1264–1269.
8 (a) O. Casanova, S. Iborra and A. Corma, ChemSusChem, 2009, 2,
1138–1144; (b) Y. Y. Gorbanev, S. K. Klitgaard, J. M. Woodley, C. H.
Christensen and A. Riisager, ChemSusChem, 2009, 2, 672–675; (c) O.
Casanova, S. Iborra and A. Corma, J. Catal., 2009, 265, 109–116.
9 (a) A. Gandini, Polym. Chem., 2010, 1, 245–251; (b) A. Gandini and
M. N. Belgacem, Prog. Polym. Sci., 1997, 22, 1203–1379.
10 (a) Z. T. Du, J. P. Ma, H. Ma, J. Gao and J. Xu, Green Chem., 2010,
12, 590–592; (b) Z. T. Du, H. Miao, H. Ma, Z. Q. Sun, J. P. Ma and
J. Xu, Adv. Synth. Catal., 2009, 351, 558–562; (c) Z. T. Du, J. P. Ma,
H. Ma, M. Wang, Y. Z. Huang and J. Xu, Catal. Commun., 2010, 11,
732–735.
11 (a) A. Atlamsani, J. M. Bregeault and M. Ziyad, J. Org. Chem., 1993,
58, 5663–5665; (b) M. Vennat, P. Herson, J. M. Bregeault and G.
B. Shul’pin, Eur. J. Inorg. Chem., 2003, 908–917; (c) L. El Aakel, F.
Launay, A. Atlamsani and J. M. Bregeault, Chem. Commun., 2001,
2218–2219; (d) M. Kirihara, S. Takizawa and T. Momose, J. Chem.
Soc., Perkin Trans. 1, 1998, 7–8.
Scheme 3 Proposed reaction pathways for oxidation of HMF catalyzed
by VO(acac)2.
In summary, HMF was oxidized to maleic anhydride with
molecular oxygen using VO(acac)2 as catalyst in liquid phase.
The C–C bond cleavage occurred due to the hydroxymethyl
group of HMF itself rather than the aldehyde group. This work
provides a possibility for the preparation of MA from biomass-
based feedstocks via oxidation of HMF. Further study of this
transformation is currently underway.
The work was supported by the National Natural Science
Foundation of China (projects 20736010 & 20803074); We also
thank Dr G. J. Zhao and Dr J. Hu for their help in theoretical
studies.
12 (a) M. Kirihara, Y. Ochiai, S. Takizawa, H. Takahata and H. Nemoto,
Chem. Commun., 1999, 1387–1388; (b) Y. Maeda, N. Kakiuchi, S.
Matsumura, T. Nishimura, T. Kawamura and S. Uemura, J. Org.
Chem., 2002, 67, 6718–6724; (c) S. Kodama, Y. Ueta, J. Yoshida, A.
Nomoto, S. Yano, M. Ueshima and A. Ogawa, Dalton Trans., 2009,
9708–9711.
13 R. A. Sheldon and J. K. Kochi, Metal-catalyzed oxidations of
organic compounds: mechanistic principles and synthetic methodology
including biochemical processes, Academic Press, New York, 1981.
14 Very recently, we reported an efficient catalytic system for aerobic
oxidation of HMF to DFF: J. P. Ma, Z. T. Du, J. Xu, Q. H. Chu and
Y. P a n g , ChemSusChem, DOI: 10.1002/cssc.201000273.
Notes and references
‡ Acetonitrile contained 1% acetic acid.
1 K. Weissermel and H. J. Arpe, Industrial Organic Chemistry, Com-
pletely Revised 4th edn, Wiley-VCH, Weinheim, 2003, pp. 367–374.
This journal is
The Royal Society of Chemistry 2011
Green Chem., 2011, 13, 554–557 | 557
©