13530 J. Phys. Chem. B, Vol. 107, No. 48, 2003
Torbeev et al.
represented in Figures 5 and 6 were measured either on the
diffractometer or with an optical goniometer.
Weizmann Institute for the support that allowed him to work
at the Materials and Interfaces Department during the summer
of 2002. We acknowledge the help of Dr. Yu. A. Strelenko (N.
D. Zelinsky Institute of Organic Chemistry, Russian Academy
of Sciences) with NMR measurements. This work was supported
by the Russian Academy of Sciences (programs of academicians
O. M. Nefedov and Yu. A. Zolotov), the Russian Foundation
for Basic Research (RFBR) (grant nos. 03-03-32019, 03-03-
06526, 02-03-32311, and 03-03-04010), and INTAS (grant no.
99-00157). We also thank the two referees for their invaluable
comments on this paper.
Calculations of homo- and heterodimeric clusters were
performed with the Gaussian 98 program package35 at the
B3LYP level. Full optimization was carried out with the SDD
basis set starting from the X-ray structural data. As convergence
criteria, the extremely tight threshold limits of 2 × 10-6 and 6
× 10-6 au were applied for the maximum force and displace-
ment, respectively.
Compound 1, obtained as colorless crystals, was prepared
from 15 g (0.102 mol) of Me(All)NPh and 17.45 g (0.102 mol)
of PhCH2Br (one week at 22 °C, in the dark). The obtained
solid was first washed with benzene-hexane (1:1) for 1 day,
yield of crude product 29.85 g (92%). Then it was recrystallized
three times from water at 5 °C, yield 6.5 g (20%). Obtained
crystals were analytically pure, mp 165-166 °C (decomp).
Solubility (20 °C) in H2O: (w/w) 3.8%. Anal. Calcd for
Supporting Information Available: CIF file. This material
References and Notes
(1) Kostyanovsky, R. G.; Kostyanovsky, V. R.; Kadorkina, G. K.;
Lyssenko, K. A. MendeleeV Commun. 2003, 111.
1
C17H20NBr: C, 64.16; H, 6.33. Found: C, 64.21; H 6.28. H
(2) Chirality in Industry II. DeVelopment in the Commercial Manu-
facture and Applications of Optically ActiVe Compounds; Collins, A. N.,
Sheldrake, G. N., Crosby, J., Eds.; Wiley & Sons: Chichester, England,
1997; pp 81-180.
(3) Jacques, J.; Collet, A.; Wilen, S. H. Enantiomers, Racemates and
Resolutions; Krieger Publishing Company: Malabar, FL, 1994.
(4) (a) Coquerel, G.; Petit, M.-N.; Bouaziz, R. PCT Patent WO 95/
08522. (b) Ndzie´, E.; Cardinael, P.; Schoofs, A.-R.; Coquerel, G. Tetra-
hedron: Asymmetry 1997, 8, 2913.
(5) (a) Kinbara, K.; Tagawa, Y.; Saigo, K. Tetrahedron: Asymmetry
2001, 12, 2927. (b) Kinbara, K.; Hashimoto, Y.; Sukegawa, M.; Nohira,
H.; Saigo, K. J. Am. Chem. Soc. 1996, 118, 3441. (c) Kostyanovsky, R.
G.; Bronzova, I. A.; Lyssenko, K. A. MendeleeV Commun. 2002, 4.
(6) The resolution may be limited by the existence of an unstable
racemic compound: (a) Petit, M.-N.; Coquerel, G. MendeleeV Commun.
2003, 95. (b) Houllemare-Druot, S.; Coquerel, G. J. Chem. Soc., Perkin
Trans. 2 1998, 2211.
NMR (500.13 MHz, CD3OD): δ 3.44 (3H, s, Me), 4.54 (1H,
dd, Ha, 2Jab ) -13.4 Hz, 3Jac ) 7.7 Hz), 5.03 (1H, dd, Hb, 2Jab
3
) -13.4 Hz, Jbc ) 5.4 Hz), 5.21 (2H, dd, CH2-Ph, AB
2
spectrum, J ) -12.7 Hz, ∆ν ) 42.3 Hz), 5.68 (dd, 1H, Hd,
3
2Jde )2.0 Hz, Jdc )9.7 Hz), 5.69 (1H, m, Hc), 5.72 (1H, dd,
2
3
He, Jed ) 2.0 Hz, Jec ) 16.4 Hz), 7.08 (2H, d, o-Bn), 7.30
(2H, t, m-Bn), 7.46 (1H, t, p-Bn), 7.60 (3H, m, p,m-Ph), 7.72
(2H, m, o-Ph).
(7) (a) Furberg, S.; Hassel, O. Acta Chem. Scand. 1950, 4, 1020. (b)
Martin, R. H.; Marchant, M. J. Tetrahedron 1974, 30, 343. (c) Green, B.
S.; Knossow, M. Science 1981, 214, 795. (d) Davey, R. J.; Black, S. N.;
Williams, L. J.; McEwan, D.; Sadler, D. E. J. Cryst. Growth 1990, 102,
97. (e) Potter, G. A.; Garcia, C.; McCague, R.; Adger, B.; Collet, A. Angew.
Chem., Int. Ed. Engl. 1996, 35, 1666. (f) Berfeld, M.; Zbaida, D.;
Leiserowitz, L.; Lahav, M. AdV. Mater. 1999, 11, 328. (g) Zbaida, D.; Lahav,
M.; Drauz, K.; Knaup, G.; Kottenhahn, M. Tetrahedron 2000, 56, 6645.
(h) Addadi, L.; Weinstein, S.; Gati, E.; Weissbuch, I.; Lahav, M. J. Am.
Chem. Soc. 1982, 104, 4610. (i) Beilles, S.; Cardinael, P.; Ndzie, E.; Petit,
S.; Coquerel, G. Chem. Eng. Sci. 2001, 56, 2281. (j) Gervais, C.; Beilles,
S.; Cardinael, P.; Petit, S.; Coquerel, G. J. Phys. Chem. B 2002, 106, 646.
(8) Hager, O. H.; Llamas-Saiz, A. L.; Foces-Foces, C.; Claramunt, R.
M.; Lopez, C.; Elguero, J. HelV. Chem. Acta 1999, 82, 2213.
(9) Previously in our group, the elaboration of racemate resolution
procedures clashed with several cases of racemic twinning: (a) Kosty-
anovsky, R. G.; Torbeev, V. Yu.; Lyssenko, K. A. Tetrahedron: Asymmetry
2001, 12, 2721. (b) Kostyanovsky, R. G.; Kadorkina, G. K.; Lyssenko, K.
A.; Torbeev, V. Yu.; Kravchenko, A. N.; Lebedev, O. V.; Grintselev-
Knyazev, G. V.; Kostyanovsky, V. R. MendeleeV Commun. 2002, 6. (c)
Kostyanovsky, R. G.; Lyssenko, K. A.; Kravchenko, A. N.; Lebedev, O.
V.; Kadorkina, G. K.; Kostyanovsky, V. R. MendeleeV Commun. 2001,
134.
(10) This phenomenon was found to happen for other crystal symmetries
as well: (a) Heller, E.; Schmidt, G. M. J. Isr. J. Chem. 1971, 9, 449. (b)
Maggard, P. A.; Kopf, A. L.; Stern, C. L.; Poeppelmeier, K. R.; Ok, K.
M.; Halasyamani, P. S. Inorg. Chem. 2002, 41, 4852.
(11) Monaco, H. L.; Viterbo, D.; Scordari, F.; Giacovazzo, C. Funda-
mentals of Crystallography; Oxford University Press: New York, 1992;
pp 133-137.
(12) According to intuition, we might expect to observe the disorder
caused by the presence of two enantiomers in a crystal. We do not see it
because they are not statistically mixed but separated in large domains,
which are oriented to each other crystallographically perfectly. We like to
consider the composite planes between domains as fraction of metastable
racemic compound (see ref 22); however, the concentration of this fraction
is very low (approximately 10-3 % (w/w)), and the planes do not translate
themselves. Thus, the X-ray reflections for twinned crystals and pure
enantiomeric crystals differ only by an anomalous correction.
(13) (a) Flack, H. D. HelV. Chim. Acta 2003, 86, 905. (b) Flack, H. D.;
Bernardinelli, G. J. Appl. Crystallogr. 2000, 33, 1143. (c) Flack, H. D.;
Bernardinelli, G. Acta Crystallogr., Sect. A 1999, 55, 908. (d) Flack, H. D.
Acta Crystallogr., Sect. A 1983, 39, 876.
13C {1H} NMR (125.03 MHz, CD3OD): δ 46.81 (Me), 70.60
(-CH2-C2H3), 73.82 (CH2Ph), 123.26 (o-Ph), 125.86 (-CH)),
128.25 (ipso-Bn), 128.74 (CH2dC2H3-), 129.52 (m-Bn), 131.17
(m-Ph), 131.44 (p-Ph), 131.52 (p-Bn), 133.43 (o-Bn), 142.60
(ipso-Ph). The assignment of carbon signals to the appropriate
proton signals was performed by 2D HSQC and HMBC
correlations. UV (1.05 × 10-3 M, H2O), ꢀ(λ, nm): 2855 (203),
10 945 (220.6), 628 (262); CD spectrum of needlelike crystal
(1.1 × 10-3 M, EtOH), ∆ꢀ(λ, nm): 9.3 (212.5).
Compound 2, colorless crystals, precipitated from an aqueous
solution of 1 and an equimolar quantity of NaI with quantitative
yield, mp 143-147 °C (decomp), has the same NMR, UV, and
CD properties. Anal. Calcd for C17H20NI: C, 55.90; H, 5.52.
Found: C, 55.91; H, 5.48.
Compound 3, colorless crystals, was prepared from p-BrC6H4-
CH2Br and Me(All)NPh. The reaction was performed without
solvent for 1 week at room temperature. The obtained oily
product was solidified with dry ethyl acetate and then recrystal-
lized two times from acetonitrile/ethyl acetate (1:1), mp 99.5-
100.5 °C. Anal. Calcd for C17H19NBr2: C, 51.41; H, 4.82.
1
Found: C, 51.47; H, 4.98. H NMR (400.14 MHz, CD3OD):
δ 3.48 (3H, s, Me), 4.61 (1H, dd, Ha, 2Jab ) -13.1 Hz, 3Jac
)
2
3
6.5 Hz), 5.05 (1H, dd, Hb, Jab ) -13.1 Hz, Jbc ) 4.3 Hz),
2
5.14 (2H, dd, CH2-Ph, AB spectrum, J ) -12.8 Hz, ∆ν )
67.2 Hz), 5.52-5.67 (3H, m, Hd, Hc, He), 6.99 (2H, d, o-C6H4-
Br), 7.42 (2H, d, m-C6H4Br), 7.60-7.64 (3H, m, p,m-Ph), 7.77-
7.79 (2H, m, o-Ph).
Acknowledgment. We are grateful to Professor M. Lahav
(Weizmann Institute of Science, Rehovot, Israel) for valuable
discussions and advice. V.Y.T. gratefully acknowledges the