C O M M U N I C A T I O N S
Scheme 2
7-Azabenzonorbornadienes could also be subjected to the same
conditions. In this case, the choice of the functional group attached
on the nitrogen is rather important. No reaction was found to occur
t
when R ) CO2Me or CO2 Bu. Alternatively, when utilizing the
azabicyclic alkene 6 (R ) Ts), the reaction occurred smoothly, and
86% of the aziridine 715 was isolated.
Scheme 3
In conclusion, we have demonstrated the first examples of
ruthenium-catalyzed isomerization of 7-oxa/azabenzonorbornadienes
to their corresponding vinyl epoxides or aziridines. This method
presents a mild, simple, and efficient experimental procedure for
the preparation of 1,2-naphthalene oxides and imines. Further
investigations of the scope of the reaction and the development of
a chiral catalyst are currently in progress in our laboratory.
Acknowledgment. This work was supported by NSERC
(Canada). K.V. thanks NSERC for providing a CGS-D2 scholarship.
Scheme 4
Supporting Information Available: Detailed procedures and full
characterization of new compounds. This material is available free of
References
(1) (a) Kaelin, D. E.; Lopez, O.; Martin, S. F. J. Am. Chem. Soc. 2001, 123,
6937. (b) Apsel, B.; Bender, J. A.; Escobar, M.; Kaelin, D. E.; Lopez, O.
D.; Martin, S. F. Tetrahedron Lett. 2003, 44, 1075. (c) Kaelin, D. E.;
Sparks, S. M.; Plake, H. R.; Martin, S. F. J. Am. Chem. Soc. 2003, 125,
12994. (d) Biland-Thommen, A. S.; Raju, G. S.; Blagg, J.; White, A. J.
F.; Barrett, A. G. M. Tetrahedron Lett. 2004, 45, 3181.
(2) Lautens, M.; Fagnou, K.; Taylor, M.; Rovis, T. J. Organomet. Chem.
2001, 624, 259.
(3) Feng, C.-C.; Nandi, M.; Sambaiah, T.; Cheng, C.-H. J. Org. Chem. 1999,
64, 3538.
(4) (a) Jerina, D. M.; Daly, J. W.; Witkop, B. J. Am. Chem. Soc. 1968, 90,
6525. (b) Jerina, D. M.; Daly, J. W.; Witkop, P.; Zaltzman-Nirenberg, P.;
Udenfriend, S. Biochemistry 1970, 9, 147. (c) Kaubisch, N.; Daly, J. W.;
Jerina, D. M. Biochemistry 1972, 11, 3080. (d) Harvey, R. G.; Geacintov,
N. E. Acc. Chem. Res. 1988, 21, 66.
position and the nature of the functional group. In the presence of
groups located at the oxabicyclic ring junction (entries 5, 7, and
8), single regioisomers were formed, whereas a poor regioisomeric
ratio was observed in the case of a remote ester substituent (entry
6). It is also noteworthy that alkenes 1g and 1h, bearing respectively
an electron-withdrawing and an electron-donating group at the ring
junction, give opposite regioselectivity.
(5) (a) Jeffrey A. M.; Yeh H. J. C.; Jerina D. M.; DeMarinis R. M.; Foster C.
H.; Piccolo D. E.; Berchtold G. A. J. Am. Chem. Soc. 1974, 96, 6929. (b)
Tsang W.-S.; Griffin, G. W.; Horming, M. G.; Stillwell, W. G. J. Org.
Chem. 1982, 47, 5339. (c) Agarwal, R.; Boyd, D. R.; McMordie, R. A.
S.; O’Kane, G. A.; Porter, P.; Sharma, N. D.; Dalton, H.; Gray, D. J. J.
Chem. Soc., Chem. Commun. 1990, 1711.
(6) (a) Vogel, E.; Kla¨rner, F.-G. Angew. Chem., Int. Ed. Engl. 1968, 7, 374.
(b) Boyd, D. R.; Jerina, D. M.; Daly, J. W. J. Org. Chem. 1970, 35, 3170.
(c) Yagi, H.; Jerina, D. M. J. Am. Chem. Soc. 1975, 97, 3185. (d) Akhtar,
M. N.; Boyd, D. R.; Hamilton, J. G. J. Chem. Soc., Perkin Trans. 1 1979,
2437. (e) Jennings, W. B.; Rutherford, M. Tetrahedron Lett. 1988, 44,
7551. (f) Agarwal, S. K.; Boyd, D. R.; Jennings, W. B.; McGuckin, R.
M.; O’Kane, G. A. Tetrahedron Lett. 1989, 30, 123. (g) Oh, S. S.; Butler,
W. M.; Koreeda, M. J. Org. Chem. 1989, 54, 4499.
(7) (a) See ref 6. (b) Rao, S. N.; More O’Ferrall, R. A.; Kelly, S. C.; Boyd,
D. R.; Agarwal, R. J. Am. Chem. Soc. 1993, 115, 5458. (c) Brandt, P.;
Jia, Z. S.; Thibblin, A. J. Org. Chem. 2002, 67, 7676.
(8) DCE was chosen for the rest of the study because of its ease of removal.
(9) For the synthesis of Cp*Ru(cod)Br and Cp*Ru(cod)I, see: Villeneuve,
K.; Tam, W. Organometallics 2006, 25, 843.
(10) (a) Jordan, R. W.; Tam, W. Org. Lett. 2001, 3, 2367. (b) Villeneuve, K.;
Riddell, N. G.; Jordan, R. W.; Tsui, G.; Tam, W. Org. Lett. 2004, 6,
4543. (c) Riddell, N.; Villeneuve, K.; Tam, W. Org. Lett. 2005, 7, 3681.
(11) C-O insertion has been previously reported with the exact same catalyst,
see: Yamamoto, Y.; Nakagai, Y.; Itoh, K. Chem. Eur. J. 2004, 10, 231
and references therein.
(12) A similar argument was proposed in the investigation of the rhodium-
catalyzed ring-opening reaction, see: Lautens, M.; Fagnou, K. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, 5455.
(13) Equey, O.; Vrancken, E.; Alexakis, A. Eur. J. Org. Chem. 2004, 2151.
(14) (a) Tueting, D. R.; Echavarren, A. M.; Stille, J. K. Tetrahedron 1989, 45,
979. (b) Castan˜o, A. M.; Me´ndez, M.; Ruano, M.; Echavarren, A. M. J.
Org. Chem. 2001, 66, 589.
(15) Related aziridines have been prepared via a multistep route similar to the
one used for naphthalene oxides, see: Blum, C. J.; Ittah, Y.; Shahak, I.
Tetrahedron Lett. 1975, 51, 4607.
On the basis of the results presented above, a mechanistic
pathway divided in two segments accounting for the formation of
1,2-naphthalene oxide and 1-naphthol is proposed in Scheme 2.
After dissociation of the cod ligand, the ruthenium catalyst can be
chelated by 1a, which would allow strain release through an
oxidative insertion of ruthenium into the C-O bond.11 Since no
nucleophile is present, which precludes nucleophilic ring-opening
processes,2 a reductive elimination closes the epoxide ring and
regenerates the catalyst. Finally, the corresponding naphthol 2a
would arise from 3a as previously described.7
One piece of evidence for the insertion into the C-O bond
pathway is the fact that opposite regioisomers are formed in the
case of 1g and 1h. The exclusive formation of 4-methyl-1-naphthol
2h when 1h was treated with Cp*Ru(cod)Cl, suggests that oxidative
insertion occurs in the most electron-rich C-O bond a (Scheme
3).12 On the other hand, opposite selectivity was observed with
alkene 1g. In this case, oxidative insertion occurs in C-O bond b,
away from electron-withdrawing methyl ester group.
The instability of arene oxide 3a could be circumvented by
transforming them in situ into more stable products (Scheme 4).
On the basis of previous work,5 we performed a nucleophilic 1,2-
13
addition of LiAlMe4 on 3a, yielding 4 in 41% (unoptimized).
Additionally, cis-1,4-disubstituted dihydronaphthalenol 5 was syn-
thesized (40% unoptimized yield) by taking advantage of the vinyl
epoxide to achieve a palladium-catalyzed allylic substitution with
diethylmalonate.14
JA058621L
9
J. AM. CHEM. SOC. VOL. 128, NO. 11, 2006 3515