RSC Advances
Paper
Table 1 Comparison for different non-precious metal catalysts in
1.0 M KOH for OER
Conflicts of interest
There are no conicts to declare.
h10
Electrolytes (mV) [mV decꢀ1
Tafel slope
Electrocatalyst
]
References
Acknowledgements
Cu-CNTCPP
Zn-CNTCPP
CNTCPP
Mn3O4/CoSe2
Zn-Co-LDH
Fe doped Co3O4
1 M KOH
1 M KOH
1 M KOH
1 M KOH
0.1 M KOH
1 M KOH
430
480
510
450
460 101
370
400
83.9
87.5
90.1
49
This work
This work
This work
1 (ref. 46)
2 (ref. 47)
3 (ref. 48)
4 (ref. 49)
This work was supported by the NSF of China (Grant No.
21771191), Taishan Scholar Foundation (ts201511019), the
Shandong Natural Science Fund (ZR2017QB012), the Funda-
mental Research Funds for the Central Universities
(14CX02213A, 16CX05015A), the Foundation of State Key
Laboratory of Structural Chemistry (20160006), and the Applied
Basic Research Projects of Qingdao (16-5-1-95-jch).
60
54.5
Fe3O4@Co9S8/rGO-2 1 M KOH
CNTCPP, we supposed its reaction mechanism in the OER
process, as the axial direction of Cu2+ ions are unsaturated-
coordinated, which provides mainly catalytically active sites
used for fast dissipation of the electrons generated during OER
(Scheme 1): a Cu atom with an oxidation state of 2+ serves as the
center, it could be connected by solvent –OH and H2O ligands in
1.0 M KOH solution. As H2O adsorption on the surface is
favorable thermodynamically, the OER directly splits H2O on
a Cu2+ site to produce an adsorbed –OH. –OH then loses
a proton to form an O atom, so a Cu–Oꢀ group would form
(steps I and II). Aer the nucleophilic attack of a solvent
molecule on the Cu–Oꢀ group, a hydroperoxo CuOOH group
was yielded (step III). Then a superoxo (step IV) and molecular
O2 (step V) could formed. Finally, O2 is evolved, and the catalyst
is recovered when a H2O molecule connects to the Cu site (step
VI).
References
1 H. Shin, H. Xiao and W. A. Goddard, J. Am. Chem. Soc., 2018,
140, 6745–6748.
2 Z. D. Huang, J. H. Liu, Z. Y. Xiao, H. Fu, W. D. Fan, B. Xu,
B. Dong, D. Liu, F. N. Dai and D. F. Sun, Nanoscale, 2018,
DOI: 10.1039/C8NR06877A.
3 M. R. Gao, X. Cao, Q. Gao, Y. F. Xu, Y. R. Zheng, J. Jiang and
S. H. Yu, ACS Nano, 2014, 8, 3970–3978.
4 C. Tang, N. Y. Cheng, Z. H. Pu, W. Xing and X. P. Sun, Angew.
Chem., Int. Ed., 2018, 54, 9351–9355.
5 F. Song, L. C. Bai, A. moysiadou, S. Lee, C. Hu, L. Liardet and
X. L. Hu, J. Am. Chem. Soc., 2018, 140, 7748–7759.
6 T. Y. Ma, S. Dai, M. Jaroniec and S. Z. Qiao, J. Am. Chem. Soc.,
2014, 136, 13925–13931.
In summary, complexes of Cu-CNTCPP and Zn-CNTCPP have
been successfully synthesized and used as OER catalyst by
utilizing of conductive CNTCPP porphyrin ligands. As an
advanced OER catalyst, Cu-CNTCPP and Zn-CNTCPP catalyst
exhibit a low potential of 1.66 V and 1.71 V. This designed 0D
Cu-CNTCPP supramoleculer structure possesses plenty of
catalytic active sites and high electrical conductivity, which can
lead to better OER activity. Compared with those non-noble-
metal electrocatalytic materials reported recently, Cu-CNTCPP
electrode presents a quite large exchange current density and
a relatively small Tafel slope, suggesting it is a promising low-
cost and earth-abundant metallic electrocatalyst for OER. We
anticipate that the design of the OER electrocatalyst will lead
improved strategies and broad the scope for future exploration
in MOFs elds.
7 H. Y. Zou, B. W. He, P. Y. Kuang, J. G. Yu and K. Fan, ACS
Appl. Mater. Interfaces, 2018, 10, 22311–22319.
8 X. H. Ren, J. Zhou, X. Qi, Y. D. Liu, Z. Y. Huang, Z. J. Li,
Y. Q. Ge, S. C. Dhanabalan, J. S. Ponraj, S. Y. Wang,
J. X. Zhong and H. Zhang, Adv. Energy Mater., 2017, 7,
1700396.
9 J. Li, Y. C. Wang, T. Zhou, H. Zhang, X. H. Sun, J. Tang,
L. J. Zhang, A. M. Al-Enizi, Z. Q. Yang and G. F. Zheng, J.
Am. Chem. Soc., 2015, 137, 14305–14312.
10 F. Song and X. L. Hu, J. Am. Chem. Soc., 2014, 136, 16481–
16484.
11 C. Jin, F. L. Lu, X. C. Cao, Z. R. Yang and R. Z. Yang, J. Mater.
Chem. A, 2013, 1, 12170–12177.
12 M. R. Gao, Y. F. Xu, J. Jiang, Y. R. Zheng and S. H. Yu, J. Am.
Chem. Soc., 2012, 134, 2930–2933.
13 L. T. Yan, L. Cao, P. C. Dai, X. Gu, D. D. Liu, L. J. Li, Y. Wang
and X. B. Zhao, Adv. Funct. Mater., 2017, 27, 1703455.
14 D. D. Wang, X. Chen, D. G. Evans and W. S. Yang, Nanoscale,
2013, 5, 5312–5315.
15 X. Long, J. K. Li, S. Xiao, K. Y. Yan, Z. L. Wang, H. N. Chen
and S. H. Yang, Angew. Chem., 2014, 126, 7714–7718.
16 H. J. Liang, W. Shuang, Y. T. Zhang, S. J. Chao, H. J. Han,
X. B. Wang, H. Zhang and L. Yang, ChemElectroChem,
2017, 5, DOI: 10.1002/celc.201701074.
17 C. Wang, Z. Xie, K. E. deKra and W. Lin, J. Am. Chem. Soc.,
2011, 133, 13445–13454.
18 S. L. Zhao, Y. Wang, J. C. Dong, C. T. He, H. J. Yin, P. F. An,
K. Zhao, X. F. Zhang, C. Gao, L. J. Zhang, J. W. Lv, J. X. Wang,
Scheme 1 Proposed reaction mechanism of Cu-CNTCPP for OER.
40058 | RSC Adv., 2018, 8, 40054–40059
This journal is © The Royal Society of Chemistry 2018