Communication
Organic & Biomolecular Chemistry
tive to solution (empirically shown in C, Scheme 3). This obser-
vation could be due to the rate of the desired reaction being
faster under milling conditions, or, because the rate of catalyst
degradation is slower, indeed, milling could afford a pathway
whereby deactivated catalyst is transformed back into active
catalyst by mechanical activation.10 Regarding air and moist-
ure sensitivity, it should be noted that mechanochemical
milling jars are not hermetically sealed, but, air ingress is
likely to be greatly reduced, thus if the reaction system is able
to generate it’s own anaerobic conditions within the milling-
jar then disruption of those conditions is likely to be slow in
comparison to a solution based reaction, such considerations
could help prevent catalyst deactivation and contribute
towards the observed behaviour.
Notes and references
1 (a) J. F. Hartwig, Acc. Chem. Res., 2008, 41, 1534–1544;
(b) C. Valente, M. Pompeo, M. Sayah and M. G. Organ, Org.
Process Res. Dev., 2014, 18, 180–190; (c) D. S. Surry and
S. L. Buchwald, Angew. Chem., Int. Ed., 2008, 47, 6338–6361.
2 (a) C. Valente, S. Calimsiz, K. H. Hoi, D. Mallik, M. Sayah
and M. G. Organ, Angew. Chem., Int. Ed., 2012, 51, 3314–
3332; (b) J. Nasielski, N. Hadei, G. Achonduh,
E. A. B. Kantchev, C. J. O’Brien, A. Lough and M. G. Organ,
Chem. – Eur. J., 2010, 16, 10844–10853; (c) E. A. B. Kantchev,
C. J. O’Brien and M. G. Organ, Angew. Chem., Int. Ed., 2007,
46, 2768–2813; (d) G. C. Fortman and S. P. Nolan, Chem. Soc.
Rev., 2011, 40, 5151–5169; (e) S. Diez-Gonzalez, N. Marion
and S. P. Nolan, Chem. Rev., 2009, 109, 3612–3676;
(f) C. J. O’Brien, E. A. B. Kantchev, G. A. Chass, N. Hadei,
A. C. Hopkinson, M. G. Organ, D. H. Setiadi, T.-H. Tang and
D.-C. Fang, Tetrahedron, 2005, 61, 9723–9735.
3 (a) C. J. O’Brien, E. A. B. Kantchev, C. Valente, N. Hadei,
G. A. Chass, A. Lough, A. C. Hopkinson and M. G. Organ,
Chem. – Eur. J., 2006, 12, 4743–4748; (b) M. Pompeo,
J. L. Farmer, R. D. J. Froese and M. G. Organ, Angew. Chem.,
Int. Ed., 2014, 53, 3223–3226; (c) K. H. Hoi, S. Calimsiz,
R. D. J. Froese, A. C. Hopkinson and M. G. Organ, Chem. –
Eur. J., 2011, 17, 3086–3090.
4 (a) J. S. L. Howard, Q. Cao and D. L. Browne, Chem. Sci.,
2018, 9, 3080–3094; (b) J. G. Hernández and C. Bolm,
J. Org. Chem., 2017, 82, 4007–4019; (c) G.-W. Wang, Chem.
Soc. Rev., 2013, 42, 7668–7700; (d) J.-L. Do and T. Friščić,
ACS Cent. Sci., 2017, 3, 13–19; (e) O. Eguaogie, J. S. Vyle,
P. F. Conlon, M. A. Gîlea and Y. Liang, Beilstein J. Org.
Chem., 2018, 14, 955; (f) T.-X. Métro, J. Martinez and
F. Lamaty, ACS Sustainable Chem. Eng., 2017, 5, 9599;
(g) S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier,
T. Friščić, F. Grepioni, K. D. M. Harris, G. Hyett, W. Jones,
A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin,
W. C. Shearouse, J. W. Steed and D. C. Waddell, Chem. Soc.
Rev., 2012, 41, 413.
Conclusion
Herein we report an operationally simple mechanochemical
method to carry out a solvent-less Buchwald–Hartwig amin-
ation reaction of secondary amines. The reported method is
robust and can be achieved without special precaution to pre-
clude air or water from the reaction system. The method has
been applied to 30 different substrates including both liquid
and solid components and was successfully incorporated into
the synthesis of the antidepressant API Vortioxetine. The
potential for mechanical activation to offer benefits to catalytic
reactions has been briefly described.
Notes
Information about the data underpinning the results pre-
sented here, including how to access them, can be found in
10.17035/d.2018.0056464884.
5 (a) Q. Cao, J. L. Howard, E. Wheatley and D. L. Browne,
Angew. Chem., Int. Ed., 2018, 57, 11339–11343;
(b) Z.-J. Jiang, Z.-H. Li, J.-B. Yu and W.-K. Su, J. Org. Chem.,
2016, 81, 10049–10055; (c) L. Chen, M. Regan and J. Mack,
ACS Catal., 2016, 6, 868–872; (d) S.-J. Lou, Y.-J. Mao,
D.-Q. Xu, J.-Q. He, Q. Chen and Z.-Y. Xu, ACS Catal., 2016,
6, 3890–3894; (e) K.-Y. Jia, J.-B. Yu, Z.-J. Jiang and W.-K. Su,
J. Org. Chem., 2016, 81, 6049–6055.
Conflicts of interest
There are no conflicts to declare.
6 D. C. Waddell, T. D. Clark and J. Mack, Tetrahedron Lett.,
2012, 53, 4510–4513.
7 During the preparation of this manuscript we became
aware of a closely related report: Q.-L. Shao, Z.-J. Jiang and
W.-K. Su, Tetrahedron Lett., 2018, 59, 2277–2280.
8 For examples of Pd-PEPPSI catalysed cross coupling reac-
tions using tBuOK as base see: (a) M. G. Organ, M. Abdel-
Hadi, S. Avola, I. Bubovyk, N. Hadei, E. A. B. Kantchev,
C. O’Brien, M. Sayah and C. Valente, Chem. – Eur. J., 2008,
14, 2443–2452; (b) K. H. Hoi, J. A. Coggan and M. G. Organ,
Acknowledgements
D. L. B. is grateful to the EPSRC for a First Grant (D. L. B. &
Q. C. EP/P002951/1), the EPSRC U.K. National Mass
Spectrometry Facility at Swansea University and the School of
Chemistry at Cardiff University for generous support. We
thank the Cardiff Catalysis Institute for providing access to the
GC equipment used in this study and in particularly the expert
technical support from Dr Greg Shaw.
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2018