Angewandte Chemie International Edition
10.1002/anie.201709715
COMMUNICATION
this light, 4d seems to discern between the acidity of free
sulfoxides 1 and their magnesium complexes A (Scheme 2). The
lower concentration of sulfoxide nucleophiles C can explain the
small amounts of homodimerization products 5 that we have
observed using 4d.
1993, 58, 2407; (f) Foubelo, F.; Yus, M. Chem. Soc. Rev. 2008, 37, 2620
and references therein.
[
[
7]
8]
(a) Merrifield, R. B., Science 1965, 150, 178; (b) Caruthers, M. H.,
Science 1985, 230, 281; (c) Plante, O. J.; Palmacci, E. R.; Seeberger, P.
H., Science 2001, 291, 1523.
Hoyle, C. E.; Lowe, A. B.; Bowman, C. N., Chem. Soc. Rev. 2010, 39,
1
355.
In summary, we report herein a protocol to engage sulfoxides
3
2
[9]
(a) Feldman, K. S., Tetrahedron 2006, 62, 5003; (b) Pulis, A. P.; Procter,
D. J., Angew. Chem. Int. Ed. 2016, 55, 9842; (c) Bur, S. K.; Padwa, A.,
Chem. Rev. 2004, 104, 2401
in intermolecular reductive C–C coupling with sp -, sp -, and sp-
Grignard nucleophiles. This transformation covers a gap in sulfur
chemistry that has remained unsolved for decades, taking
advantage of an unusual and specific turbo-Hauser base. To the
best of our knowledge, this reaction is the first efficient Pummerer-
type coupling occurring in non-electrophilic media. Its nucleophilic
conditions allow integration with C–H and C–X metalation
reactions and is naturally orthogonal to other Pummerer-type
reactions. The new protocol has enabled the construction of
complex thioethers, which are precursors of unrelated scaffolds
such as carbonyls, olefins, halides, organometallics and boronic
esters. This concept has preliminarily demonstrated its potential
enantiospecificity, and will motivate further research in
[
10] For an innovative recent approach to C-S bond construction, see: Lian,
Z.; Bhawal, B. N.; Yu, P.; Morandi, B., Science 2017, 356, 1059.
[11] Smith, L. H. S.; Coote, S. C.; Sneddon, H. F.; Procter, D. J., Angew.
Chem. Int. Ed. 2010, 49, 5832.
[
12] (a) Shrives, H. J.; Fernández-Salas, J. A.; Hedtke, C.; Pulis, A. P.;
Procter, D. J., 2017, 8, 14801; (b) Yanagi, T.; Otsuka, S.; Kasuga, Y.;
Fujimoto, K.; Murakami, K.; Nogi, K.; Yorimitsu, H.; Osuka, A., J. Am.
Chem. Soc. 2016, 138, 14582; (c) Kobatake, T.; Fujino, D.; Yoshida, S.;
Yorimitsu, H.; Oshima, K., J. Am. Chem. Soc. 2010, 132, 11838; (d)
Shang, L.; Chang, Y.; Luo, F.; He, J.-N.; Huang, X.; Zhang, L.; Kong, L.;
Li, K.; Peng, B., J. Am. Chem. Soc. 2017; (e) Peng, B.; Geerdink, D.;
Farès, C.; Maulide, N., Angew. Chem. Int. Ed. 2014, 53, 5462; (f) Kaldre,
D.; Maryasin, B.; Kaiser, D.; Gajsek, O.; González, L.; Maulide, N.,
Angew. Chem. Int. Ed. 2017, 56, 2212; (g) Kaiser, D.; Veiros, L. F.;
Maulide, N., Chem. Eur. J. 2016, 22, 4727; (h) Fernández-Salas, J. A.;
Eberhart, A. J.; Procter, D. J., J. Am. Chem. Soc. 2016, 138, 790; (i) Peng,
B.; Huang, X.; Xie, L.-G.; Maulide, N., Angew. Chem. Int. Ed. 2014, 53,
organomagnesium
manipulations.
chemistry
and
downstream
sulfur
Acknowledgements
8
4
1
718; (j) Eberhart, A. J.; Procter, D. J., Angew. Chem. Int. Ed. 2013, 52,
008; (k) Eberhart, A. J.; Imbriglio, J. E.; Procter, D. J., Org. Lett. 2011,
3, 5882.
The authors are indebted to the Dept. of Organic Chemistry
particularly T. Krolikowski, W. Rabten and Prof. P. G. Andersson),
[
[
13] Tamura, Y.; Maeda, H.; Choi, H. D.; Ishibashi, H., Synthesis 1982, 56.
14] (a) Ruppenthal, S.; Brückner, R., J. Org. Chem. 2015, 80, 897; (b) Li-
Yuan Bao, R.; Zhao, R.; Shi, L., Chem. Commun. 2015, 51, 6884; (c)
Rauhut, C. B.; Melzig, L.; Knochel, P., Org. Lett. 2008, 10, 3891; (d) Shi,
L.; Chu, Y.; Knochel, P.; Mayr, H., Org. Lett. 2012, 14, 2602; (e) Casoni,
G.; Kucukdisli, M.; Fordham, J. M.; Burns, M.; Myers, E. L.; Aggarwal, V.
K., J. Am. Chem. Soc. 2017, 139, 11877.
(
the Dept. of Materials and Environmental Chemistry (SU) and
AstraZeneca for unrestricted support. Financial support for this
work has been received from the Knut and Alice Wallenberg
Foundation (KAW2016.0153), the ERC (StG-714737), the
Swedish Research Council (Vetenskapsrådet, 2012-2969), the
Swedish Innovation Agency (VINNOVA) through the Berzelii
Center EXSELENT, the Marie Curie Actions (631159) and
AstraZeneca AB.
[
15] (a) Oda, R.; Yamamoto, K., J. Org. Chem. 1961, 26, 4679; (b) Kobayashi,
K.; Yokota, K.; Akamatsu, H.; Morikawa, O.; Konishi, H., Bull. Chem. Soc.
Jpn. 1996, 69, 441; (c) Kobayashi, K.; Kawakita, M.; Yokota, K.;
Mannami, T.; Yamamoto, K.; Morikawa, O.; Konishi, H., Bull. Chem. Soc.
Jpn. 1995, 68, 1401; (d) Kobayashi, K.; Horita, M.; Irisawa, S.;
Matsunaga, A.; Morikawa, O.; Konishi, H., Bull. Chem. Soc. Jpn. 2002,
NMR primary data for this article are freely available in Zenodo:
7
5, 1367.
[
[
16] Oae, S.; Uchida, Y., Acc. Chem. Res. 1991, 24, 202.
Keywords: Pummerer • Sulfur • Main group elements • C–C
17] (a) Neufeld, R.; Teuteberg, T. L.; Herbst-Irmer, R.; Mata, R. A.; Stalke,
D., J. Am. Chem. Soc. 2016, 138, 4796; (b) García-Álvarez, P.; Graham,
D. V.; Hevia, E.; Kennedy, A. R.; Klett, J.; Mulvey, R. E.; O'Hara, C. T.;
Weatherstone, S., Angew. Chem. Int. Ed. 2008, 47, 8079; (c) Neufeld,
R.; Stalke, D., Chem. Eur. J. 2016, 22, 12624.
coupling • Hauser base
[
1]
(a) Croxtall, J. D.; Plosker, G. L., Drugs 2009, 69, 339; (b) Tooulia, K.-K.;
Theodosis-Nobelos, P.; Rekka, E. A., Arch. Pharm. 2015, 348, 629; (c)
Miller, E. L., J. Midwifery Women’s Health 2002, 47, 426.
[
[
18] Krasovskiy, A.; Krasovskaya, V.; Knochel, P., Angew. Chem. Int. Ed.
[
[
2]
3]
Takimiya, K.; Shinamura, S.; Osaka, I.; Miyazaki, E., Adv. Mater. 2011,
2
006, 45, 2958.
2
3, 4347.
19] (a) Conway, B.; Hevia, E.; Kennedy, A. R.; Mulvey, R. E.; Weatherstone,
S., Dalton Trans. 2005, 1532; (b) Zhang, M.-X.; Eaton, P. E., Angew.
Chem. Int. Ed. 2002, 41, 2169.
(a) Mellah, M.; Voituriez, A.; Schulz, E., Chem. Rev. 2007, 107, 5133; (b)
Otocka, S.; Kwiatkowska, M.; Madalińska, L.; Kiełbasiński, P., Chem.
Rev. 2017, 117, 4147.
[
[
[
20] See Supporting Information for details.
[
4]
(a) Liu, F.; Zhang, J. Z. H.; Mei, Y., 2016, 6, 27190; (b) Destito, P.;
Couceiro, J. R.; Faustino, H.; Lopez, F.; Mascareñas, J. L., Angew.
Chem. Int. Ed. 2017, 56, 10766.
21] Bao, R. L.; Zhao, R.; Shi, L., Chem. Commun. 2015, 51, 6884.
22] Ferrocene is known to reduce Pummerer intermediates inter- and
intramolecularly: Kobayashi, K.; Kubota, Y.; Furukawa, N., Chem. Lett.
[
[
5]
6]
Liebeskind, L. S.; Srogl, J., Org. Lett. 2002, 4, 979.
2
000, 29, 400.
(a) Screttas, C. G.; Micha-Screttas, M., J. Org. Chem. 1978, 43, 1064;
[
23] For recent own work in this area, see: (a) Suárez-Pantiga, S.; Colas, K.;
(
b) Haufe, G.; Hugenberg, V., Synlett 2008, 106; (c) Canestrari, D.;
Johansson, M. J.; Mendoza, A., Angew. Chem. Int. Ed. 2015, 54, 14094;
Lancianesi, S.; Badiola, E.; Strinna, C.; Ibrahim, H.; Adamo, M. F. A., Org.
Lett. 2017, 19, 918; (d) Abramovitch, A.; Varghese, J. P.; Marek, I., Org.
Lett. 2004, 6, 621; (e) Back, T. G.; Baron, D. L.; Yang, K., J. Org. Chem.
(
b) Otero-Fraga, J.; Suárez-Pantiga, S.; Montesinos-Magraner, M.;
Rhein, D.; Mendoza, A., Angew. Chem. Int. Ed. 2017, DOI:
0.1002/anie.201706682; (c) Mendoza, A.; Colas, K.; Suárez-Pantiga,
S.; Götz, D. C. G.; Johansson, M. J., Synlett 2016, 27, 1753.
1
This article is protected by copyright. All rights reserved.