Green Chemistry
Paper
fined nanospace, Nat. Commun., 2014, 5, 3170. ducts/polyisobutylene-pib, (Accessed January 13, 2021).
H. Tang, N. Li, F. Chen, G. Li, A. Wang, Y. Cong, X. Wang 22 Polyisobutene/Polyisobutylene (PIB), https://www.basf.com/
and T. Zhang, Highly efficient synthesis of 5-hydroxy-
methylfurfural with carbohydrates over renewable cyclopen-
tanone-based acid resin, Green Chem., 2017, 19, 1855–1860.
D. Prat, J. Hayler and A. Wells, A survey of solvent selection
guides, Green Chem., 2014, 16, 4546–4551.
J. H. Clark and S. J. Tavener, Alternative solvents: shades of
green, Org. Process Res. Dev., 2007, 11, 149–155.
P. Pollet, E. A. Davey, E. E. Urena-Benavides, C. A. Eckert 24 C. B. Watson, D. Tan and D. E. Bergbreiter, Enthalpy-driven
global/en/products/segments/industrial_solutions/perform-
ance_chemicals/business/fuel-and-lubricant-solutions/poly-
isobutenes–pib-/highly-reactive-pib.html, (Accessed January
13, 2021).
7
8
9
cosity-polyalphaolefins, (Accessed January 13, 2021).
and C. L. Liotta, Solvents for sustainable chemical pro-
cesses, Green Chem., 2014, 16, 1034–1055.
polyisobutylene depolymerization, Macromolecules, 2019,
52, 3042–3048.
1
0 D. J. C. Constable, C. Jimenez-Gonzalez and 25 C. Chao and D. E. Bergbreiter, Highly organic phase
R. K. Henderson, Perspective on solvent use in the pharma-
ceutical industry, Org. Process Res. Dev., 2007, 11, 133–137.
1 F. Pena-Pereira, A. Kloskowskim and J. Namiesnik,
soluble polyisobutylene-bound cobalt phthalocyanines as
recyclable catalysts for nitroarene reduction, Catal.
Commun., 2016, 77, 89–93.
1
Perspectives on the replacement of harmful organic sol- 26 N. Rosenfeld, C. Chao, C. B. Watson, M. P. Kumar,
vents in analytical methodologies: a framework toward the
implementation of a generation of eco-friendly alternatives,
Green Chem., 2015, 17, 3687–3705.
S. T. Madrahimov and D. E. Bergbreiter, Solubilization of
silica nanoparticles in alkanes and poly(α-olefin)s by func-
tionalized polyisobutylene oligomers, J. Polym. Sci., 2020,
58, 1144–1152.
1
2 F. P. Byrne, S. Jin, G. Paggiola, T. H. M. Petchey, J. H. Clark,
T. J. Farmer, A. J. Hunt, C. R. McElroy and J. Sherwood, 27 A. Bongini, G. Cardillo, M. Orena and S. Sandria, A simple
Tools and techniques for solvent selection: green solvent
and practical method for tetrahydropyranylation of alco-
selection guides, Sustainable Chem. Processes, 2016, 4, 7.
hols and phenols, Synthesis, 1979, 618–620.
1
1
1
3 C. J. Clarke, W. Tu, O. Levers, A. Bröhl and J. P. Hallett, 28 T. Jin, H. Wang, C. Xing, X. Li and T. Li, An efficient one–
Green and sustainable solvents in chemical processes,
Chem. Rev., 2018, 118, 747–800.
4 M. Poliakoff, P. Licence and M. W. George, A new approach
pot synthesis of 3,4-dihydropyrimidin-2-ones catalyzed by
methanesulfonic acid, Synth. Commun., 2004, 34, 3009–
3016.
to sustainability: a Moore’s law for chemistry, Angew. 29 S. R. Jetti, D. Verma and S. Jain, An efficient one-pot green
Chem., Int. Ed., 2018, 57, 12590–12591.
protocol for the synthesis of 5-unsubstituted 3,4-dihydro-
pyrimidin-2(1H)-ones using recyclable Amberlyst 15 DRY as
a heterogeneous catalyst via three-component Biginelli-Like
reaction, Int. Scholarly Res. Not., 2012, 2012, 480989.
30 L. P. Hammet and M. A. Paul, A series of simple basic indi-
cators, III, the zero point of the acidity function scale,
J. Am. Chem. Soc., 1932, 56, 827–829.
5 S. Thavornpradit, J. M. Killough and D. E. Bergbreiter,
Minimizing solvent waste in catalytic reactions in highly
recyclable hydrocarbon solvents, Org. Biomol. Chem., 2020,
1
8, 4248–4256.
1
6 M. L. Harrell, T. Malinski, C. Torres-López, K. Gonzalez,
J. Suriboot and D. E. Bergbreiter, Alternatives for conven-
3
1
tional alkane solvents, J. Am. Chem. Soc., 2016, 138, 14650– 31 A. Zheng, S. B. Liu and F. Deng, P NMR chemical shifts
1
4657.
of phosphorus probes as reliable and practical acidity
scales for solid and liquid catalysts, Chem. Rev., 2017, 117,
12475–12531.
1
7 T. J. Malinski, H. S. Bazzi and D. E. Bergbreiter,
Sustainable hydrocarbon oligomer solvent systems for
sequestration of trace organics from water, ChemSusChem, 32 NIST Chemistry Webbook, https://webbook.nist.gov/,
019, 12, 416–419. (Accessed January 13, 2021).
8 L. R. Rudnick, Synthetics, Mineral Oils, and Bio-based 33 J. Y. Park, D. K. Kim and J. S. Lee, Esterification of free fatty
2
1
1
2
Lubricants: Chemistry and Technology, CRC Press, Boca
acids using water-tolerable Amberlyst as a heterogeneous
Rotan, 1st edn, 2005.
catalyst, Bioresour. Technol., 2010, 101, S62–S65.
9 D. J. Heldebrant, H. N. Witt, S. M. Walsh, T. Ellis, 34 D. E. Bergbreiter and S. D. Sung, Liquid/liquid biphasic
J. Rauscher and P. G. Jessop, Liquid polymers as solvents
for catalytic reductions, Green Chem., 2006, 8, 807–815.
recovery/reuse of soluble polymer– supported catalysts,
Adv. Synth. Catal., 2006, 348, 1352–1366.
0 B. A. Roberts, G. W. V. Cave, C. L. Raston and J. L. Scott, 35 J. Li, S. Sung, J. Tian and D. E. Bergbreiter, Polyisobutylene
Solvent-free synthesis of calix[4]resorcinarenes, Green
Chem., 2001, 3, 280–284.
supports—a non-polar hydrocarbon analog of PEG sup-
ports, Tetrahedron, 2005, 61, 12081–12092.
This journal is © The Royal Society of Chemistry 2021
Green Chem., 2021, 23, 1266–1273 | 1273