Paper
Organic & Biomolecular Chemistry
associated with two related forms of autosomal dominant
macular dystrophy, Nat. Genet., 2001, 27, 89–93.
Notes and references
1 (a) A. Poulos, Very Long Chain Fatty Acids in Higher 11 P. Barabas, A. Liu, W. Xing, C.-K. Chen, Z. Tong, C. B. Watt,
Animals–A Review, Lipids, 1995, 30, 1–14; (b) A. Liu, Y. Lin,
R. Terry, K. Nelson and P. S. Bernstein, Role of long-chain
and very-long-chain polyunsaturated fatty acids in macular
degenerations and dystrophies, Clin. Lipidol., 2011, 6, 593–
613.
B. W. Jones, P. S. Bernstein and D. Krizaj, Role of ELOVL4
and very long-chain polyunsaturated fatty acids in mouse
models of Stargardt type 3 retinal degeneration, Proc. Natl.
Acad. Sci. U. S. A., 2013, 110, 5181–5186.
12 A. Liu, J. Chang, Y. Lin, Z. Shen and P. S. Bernstein, Long-
chain and very-long-chain polyunsaturated fatty acids in
ocular aging and age-related macular degeneration, J. Lipid
Res., 2010, 51, 3217–3229.
13 A. Liu, Y. Lin, R. Terry, K. Nelson and P. S. Bernstein, Role
of long-chain and very-long-chain polyunsaturated fatty
acids in macular degenerations and dystrophies, Clin.
Lipidol., 2011, 6, 593–613.
2 M. I. Aveldaño, A Novel Group of Very Long Chain
Polyenoic
Fatty
Acids
in
Dipolyunsaturated
Phosphatidylcholines from Vertebrate Retina, J. Biol.
Chem., 1987, 262, 1172–1179.
3 (a) A. Poulos, P. Sharp, D. Johnson and C. Easton, The
occurrence of polyenoic very long chain fatty acids with
greater than 32 carbon atoms in molecular species of phos-
phatidylcholine in normal and peroxisome-deficient 14 For a preliminary report of this work see: A. Gorusupudi,
(Zellweger’s syndrome) brain, Biochem. J., 1988, 253, 645–
650; (b) M. I. Aveldaño, Phospholipid Species Containing
Long and Very Long Polyenoic Fatty Acids Remain with
Rhodopsin after Hexane Extraction of Photoreceptor
Membranes, Biochemistry, 1988, 27, 1229–1239.
R. Rallabandi, B. Li, R. Arunkumar, J. D. Blount,
G. T. Rognon, F.-Y. Chang, A. Wade, S. Lucas, J. C. Conboy,
J. D. Rainier and P. S. Bernstein, Retinal biovailability and
functional effects of a synthetic very-long-chain polyun-
saturated fatty acid in mice, Proc. Natl. Acad. Sci. U. S. A.,
2021, 118, e2017739118.
4 A. Liu, J. Chang, Y. Lin, Z. Shen and P. S. Bernstein, Long-
chain and very long-chain polyunsaturated fatty acids in 15 (a) K. Raman, V. Tarwade and N. Salem, Synthesis and use
ocular aging and age-related macular degeneration, J. Lipid
Res., 2010, 51, 3217–3229.
of omega-3 and omega-6 very long chain polyunsaturated
fatty acids (VLC PUFAs), WO/2011/053892, 2011;
(b) G. M. Maharvi, A. O. Edwards and A. H. Fauq, Chemical
synthesis of deuterium-labeled and unlabeled very long
chain polyunsaturated fatty acids, Tetrahedron Lett., 2010,
51, 6426–6428.
5 M. P. Agbaga, R. S. Brush, M. N. Mandal, K. Henry,
M. H. Elliott and R. E. Anderson, Role of Stargardt-
3 macular dystrophy protein (ELOVL4) in the biosynthesis
of very long chain fatty acids, Proc. Natl. Acad. Sci. U. S. A.,
2008, 105, 12843–12848.
6 (a) P. X. Shaw, T. Stiles, C. Douglas, D. Ho, W. Fan, H. Du
and X. Xiao, Oxidative stress, innate immunity, and age-
related macular degeneration, AIMS Mol. Sci., 2016, 3, 196–
16 R. C. F. Ones and J. Schofield, 2-Methyl-4,5-dihydroimida-
zole as a doubly nucleophilic unit: preparation of dihydroi-
midazole azaprostanoids, J. Chem. Soc., Perkin Trans. 1,
1990, 375–383.
221; (b) J. P. Hubschman, S. Reddy and S. D. Schwartz, Age- 17 J. B. Epp and T. S. Widlanski, Facile preparation of nucleo-
related macular degeneration: current treatments, Clin.
Ophthalmol., 2009, 3, 155–166.
side-5′-carboxylic acids, J. Org. Chem., 1999, 64, 293–295.
18 K. Omura and D. Swern, Oxidation of alcohols by “acti-
7 J. P. Hubschman, S. Reddy and S. D. Schwartz, Age-related
vated” dimethyl sulfoxide. A preparative, steric, and
macular
Ophthalmol., 2009, 3, 155–166.
8 M. Cho, I. A. Barbazetto and K. B. Freund, Refractory neo-
vascular age-related macular degeneration secondary to
degeneration:
current
treatments,
Clin.
mechanistic study, Tetrahedron, 1978, 34, 1651–1660.
19 B. R. Travis, M. Sivakumar, G. O. Hollist and B. Borhan,
Facile oxidation of aldehydes to acids and esters with
oxone, Org. Lett., 2003, 5, 1031–1034.
polypoidal choroidal vasculopathy, Am. J. Ophthalmol., 20 (a) A. Liu, R. Terry, Y. Lin, K. Nelson and P. S. Bernstein,
2009, 148, 70–78.
Comprehensive and sensitive quantification of long-chain
and very long-chain polyunsaturated fatty acids in small
samples of human and mouse retina, J. Chromatogr. A,
2013, 1307, 191–200; (b) A. Gorusupudi, A. Liu,
G. S. Hageman and P. S. Bernstein, Associations of human
retinal very long-chain polyunsaturated fatty acids with
dietary lipid biomarkers, J. Lipid Res., 2016, 57, 499–508.
9 J. Hanus, F. Zhao and S. Wang, Current therapeutic devel-
opments in atrophic age-related macular degeneration,
Br. J. Ophthalmol., 2016, 100, 122–127.
10 (a) P. S. Bernstein, J. Tammur, N. Singh, A. Hutchinson,
M. Dixon, C. M. Pappas, N. A. Zabriskie, K. Zhang,
K. Petrukhin, M. Leppert and R. Allikmets, Diverse macular
dystrophy phenotype caused by a novel complex mutation 21 Mice were housed in the vivarium at the Moran Eye Center
in the ELOVL4 gene, Invest. Ophthalmol. Visual Sci., 2001,
42, 3331–3336; (b) K. Zhang, M. Kniazeva, M. Han, W. Li,
Z. Yu, Z. Yang, Y. Li, M. L. Metzker, R. Allikmets, D. J. Zack,
L. E. Kakuk, P. S. Lagali, P. W. Wong, I. M. MacDonald,
P. A. Sieving, D. J. Figueroa, C. P. Austin, R. J. Gould,
R. Ayyagari and K. Petrukhin, A 5-bp deletion in ELOVL4 is
and maintained in a standard 12 h light and 12 h dark
cycle environment, with water and food ad libitum (Teklad
Global Soy-Free Rodent Diet, Envigo). All animal handling
procedures used in this study were approved by appropriate
institutional animal care and use committees and were
carried out according to NIH guidelines.
5566 | Org. Biomol. Chem., 2021, 19, 5563–5566
This journal is © The Royal Society of Chemistry 2021