1617
R. Li et al.
Paper
Synthesis
mmol, 28.8 mg), PhB(OH)2 (0.24 mmol, 29.3 mg), and Cs2CO3 (0.20
mmol, 65.0 mg) in a N2-filled glovebox. The tube was capped with a
rubber plug and removed from the glovebox. Then CHCl3 (3.0 mL) and
H2O (20 L) were added, and the reaction mixture was cooled to 0 °C
and stirred vigorously for 16 h. The mixture was poured into H2O (10
mL), and extracted with EtOAc (3 × 10 mL). The combined organic lay-
ers were dried (anhyd Na2SO4), filtered, and concentrated under re-
duced pressure. The residue was purified by silica gel column chro-
matography with PE/EtOAc (20:1) to afford the desired product
(1R,2S)-8b (40.5 mg, 91%); []D28.2 –128.55 (c 0.40, CHCl3); 79% ee.
(3) (a) Vowinkel, E.; Wolf, C. Chem. Ber. 1974, 107, 907.
(b) Herrmann, J. M.; König, B. Eur. J. Org. Chem. 2013, 7017.
(c) Sebok, P.; Timar, T.; Eszenyi, T.; Patonay, T. J. Org. Chem.
1994, 59, 6318. (d) van Duzee, E. M.; Adkins, H. J. Am. Chem. Soc.
1935, 57, 147. (e) Maercker, A. Angew. Chem., Int. Ed. Engl. 1987,
26, 972. (f) Cornella, J.; Gómez-Bengoa, E.; Martin, R. J. Am.
Chem. Soc. 2013, 135, 1997. (g) Tobisu, M.; Yamakawa, K.;
Shimasaki, T.; Chatani, N. Chem. Commun. 2011, 47, 2946.
(h) Modak, A.; Maiti, D. Org. Biomol. Chem. 2016, 14, 21.
(i) Álvarez-Bercedo, P.; Martin, R. J. Am. Chem. Soc. 2010, 132,
17352. (j) Cordova, M.; Wodrich, M.; Meyer, B.; Sawatlon, B.;
Corminboeuf, C. ACS Catal. 2020, 10, 7021. (k) Kogan, V. Tetrahe-
dron Lett. 2006, 47, 7515. (l) Wang, X.-Y.; Leng, J.; Wang, S.-M.;
Asiri, A. M.; Marwani, H. M.; Qin, H.-L. Tetrahedron Lett. 2017,
58, 2340. (m) Chen, Q.-Y.; He, Y.-B.; Yang, Z.-Y. J. Chem. Soc.,
Chem. Commun. 1986, 1452. (n) Pan, Y.; Holmes, C. P. Org. Lett.
2001, 3, 2769.
(4) (a) Hsiao, C.; Hsiao, G.; Chen, W.; Wang, S.; Chiang, C.; Liu, L.;
Guh, J.; Lee, T.; Chung, C. J. Nat. Prod. 2014, 77, 758. (b) Zhang,
X.; Zhao, Y.; Bai, D.; Yuan, X.; Cong, S. J. Biochem. Mol. Toxicol.
2019, 33, e22301. (c) Brunel, J. M. Chem. Rev. 2005, 105, 857.
(d) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev.
2014, 114, 9047. (e) Xu, B.; Shi, L.; Zhang, Y.; Wu, Z.; Fu, L.; Luo,
C.; Zhang, L.; Peng, Y.; Guo, Q. Chem. Sci. 2014, 5, 1988.
(f) Akiyama, T.; Mori, K. Chem. Rev. 2015, 115, 9277. (g) Wen,
W.; Chen, L.; Luo, M.; Zhang, Y.; Chen, Y.; Ouyang, Q.; Guo, Q.
J. Am. Chem. Soc. 2018, 140, 9774. (h) Chen, J.; Gong, X.; Li, J.; Li,
Y.; Ma, J.; Hou, C.; Zhao, G.; Yuan, W.; Zhao, B. Science 2018, 360,
1438.
Enantiomeric excess was determined by chiral HPLC [Daicel Chiralcel
OD-H, n-hexane/i-PrOH (90:10), flow rate = 1.0 mL/min, = 254 nm],
tmax = 8.1 min, tmin = 13.0 min.
1H NMR (400 MHz, CDCl3): = 7.34–7.18 (m, 8 H), 7.15 (d, J = 7.2 Hz, 1
H), 6.68 (d, J = 9.6 Hz, 1 H), 6.10 (dd, J = 9.6, 3.9 Hz, 1 H), 4.88 (s, 1 H),
3.83 (s, 1 H).
13C NMR (100 MHz, CDCl3): = 137.8, 136.2, 132.7, 129.8, 129.4,
128.7, 128.4, 128.3, 128.1, 127.5, 126.8, 126.5, 71.4, 47.4.
Funding Information
This project was supportedby National Natural Science Foundation of
China (Grant Nos. 21702056, 21971059, and 21702055), Hunan Pro-
vincial Natural Science Foundation of China (Grant No. 2020JJ5040),
National Program for Thousand Young Talents of China, and Funda-
mental Research Funds for the Central Universities.
N
ati
o
n
a
l
N
a
turalSc
i
e
n
ce
F
o
u
n
d
a
ti
o
n
o
f
C
h
i
n
a
(2
1
7
0
2
0
5
6)N
a
ti
o
n
a
l
N
a
turalSc
i
e
nc
e
F
o
u
n
d
a
ti
o
n
o
f
C
h
i
n
a
(2
1
9
7
1
0
5
9)N
a
ti
o
n
a
l
N
atura
l
S
c
i
e
nc
e
F
o
u
n
d
a
it
o
n
o
f
C
h
i
n
a
(2
1
7
0
2
0
5
5)N
a
t
ura
l
Sc
i
e
n
c
e
F
o
u
n
dati
o
n
o
f
H
u
n
a
n
Pro
v
i
nc
e
(
2
0
2
0J
5
0
4
0)T
h
o
usa
n
d
Y
o
u
n
g
T
a
l
e
ntsPr
o
gr
a
m
o
f
C
h
i
na(
)
F
u
n
da
m
e
n
ta
l
R
esearc
h
F
u
n
ds
f
ortheCentrlaU
n
i
v
ersites()
(5) (a) Kočovský, P.; Vyskočil, Š.; Smrčina, M. Chem. Rev. 2003, 103,
3213. (b) Chen, Y.; Yekta, S.; Yudin, A. K. Chem. Rev. 2003, 103,
3155. (c) Berthod, M.; Mignani, G.; Woodward, G.; Lemaire, M.
Chem. Rev. 2005, 105, 1801. (d) Bringmann, G.; Price Mortimer,
A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew.
Chem. Int. Ed. 2005, 44, 5384. (e) Kozlowski, M. C.; Morgan, B. J.;
Linton, E. C. Chem. Soc. Rev. 2009, 38, 3193. (f) Wencel-Delord, J.;
Panossian, A.; Leroux, F. R.; Colobert, F. Chem. Soc. Rev. 2015, 44,
3418. (g) Hayashi, T. Acc. Chem. Res. 2000, 33, 354. (h) Shimada,
T.; Mukaide, K.; Shinohara, A.; Han, J.; Hayashi, T. J. Am. Chem.
Soc. 2002, 124, 1584. (i) Morimoto, T.; Mochizuki, N.; Suzuki, M.
Tetrahedron Lett. 2004, 45, 5717. (j) Guan, X.-Y.; Jiang, Y.-Q.; Shi,
M. Eur. J. Org. Chem. 2008, 2150. (k) Jiang, Y.-Q.; Shi, Y.-L.; Shi, M.
J. Am. Chem. Soc. 2008, 130, 7202. (l) Cao, Z.; Liu, Y.; Liu, Z.; Feng,
X.; Zhuang, M.; Du, H. Org. Lett. 2011, 13, 2164. (m) Zhu, Y.;
Buchwald, S. L. J. Am. Chem. Soc. 2014, 136, 4500.
(n) Bringmann, G.; Gulder, T.; Gulder, T. A. M.; Breuning, M.
Chem. Rev. 2011, 111, 563. (o) Takahashi, I.; Morita, F.; Kusagaya,
S.; Fukaya, H.; Kitagawa, O. Tetrahedron: Asymmetry 2012, 23,
1657. (p) Ma, Y.-N.; Yang, S.-D. Chem. Eur. J. 2015, 21, 6673.
(6) Ji, W.; Wu, H.-H.; Zhang, J. ACS Catal. 2020, 10, 1548.
(7) (a) Ma, Y.-N.; Zhang, H.-Y.; Yang, S.-D. Org. Lett. 2015, 17, 2034.
(b) Rohde, V. H. G.; Müller, M. F.; Oestreich, M. Organometallics
2015, 34, 3358. (c) Wang, P.; Wang, J.; Wang, L.; Li, D.; Wang, K.;
Liu, Y.; Zhu, H.; Liu, X.; Yang, D.; Wang, R. Adv. Synth. Catal.
2018, 360, 401. (d) Sasaki, H.; Irie, R.; Katsuki, T. Synlett 1993,
300. (e) Ishihara, K.; Inanaga, K.; Kondo, S.; Funahashi, M.;
Yamamoto, H. Synlett 1998, 1053. (f) Cacchi, S.; Ciattini, P. G.;
Morera, E.; Ortar, G. Tetrahedron Lett. 1986, 27, 5541.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orti
n
gI
n
f
orm
a
ti
o
n
S
u
p
p
orti
n
gI
n
f
orm
a
ti
o
n
References
(1) (a) The Chemistry of Phenols; Rappoport, Z., Ed.; Wiley-VCH:
Weinheim, 2003. (b) Engle, K. M.; Luo, S.-X.; Grubbs, R. H. J. Org.
Chem. 2015, 80, 4213. (c) Fleming, F. F.; Yao, L.; Ravikumar, P. C.;
Funk, L.; Shook, B. C. J. Med. Chem. 2010, 53, 7902.
(d) Gowrisankar, S.; Sergeev, A. G.; Anbarasan, P.; Spannenberg,
A.; Neumann, H.; Beller, M. J. Am. Chem. Soc. 2010, 132, 11592.
(e) Bymaster, F. P.; Beedle, E. E.; Findlay, J.; Gallagher, P. T.;
Krushinski, J. H.; Mitchell, S.; Robertson, D. W.; Thompson, D.
C.; Wallace, L.; Wong, D. T. Bioorg. Med. Chem. Lett. 2003, 13,
4477. (f) Narasimha, K.; Jayakannan, M. Macromolecules 2016,
49, 4102. (g) Fuhrmann, E.; Talbiersky, J. Org. Process Res. Dev.
2005, 9, 206.
(2) (a) Zhang, J.; Zhang, Y.; Geng, S.; Chen, S.; Liu, Z.; Zeng, X.; He,
Y.; Feng, Z. Org. Lett. 2020, 22, 2669. (b) Geng, S.; Zhang, J.; Chen,
S.; Liu, Z.; Zeng, X.; He, Y.; Feng, Z. Org. Lett. 2020, 22, 5582.
(c) Russell, J. E. A.; Entz, E. D.; Joyce, I. M.; Neufeldt, S. R. ACS
Catal. 2019, 9, 3304. (d) Yue, H.; Zhu, C.; Rueping, M. Org. Lett.
2018, 20, 385. (e) Wiensch, E. M.; Montgomery, J. Angew. Chem.
Int. Ed. 2018, 57, 11045. (f) Chen, Q.; Wu, A.; Qin, S.; Zeng, M.;
Le, Z.; Yan, Z.; Zhang, H. Adv. Synth. Catal. 2018, 360, 3239.
(g) Bisz, E.; Szostak, M. ChemSusChem 2017, 10, 3964. (h) Tobisu,
M.; Chatani, N. Acc. Chem. Res. 2015, 48, 1717. (i) Cornella, J.;
Zarate, C.; Martin, R. Chem. Soc. Rev. 2014, 43, 8081.
(8) (a) Wang, X.; Li, C.; Wang, X.; Wang, Q.; Dong, X.; Duan, A.;
Zhao, W. Org. Lett. 2018, 20, 4267. (b) Wang, X.; Tang, Y.; Long,
C.; Dong, W.; Li, C.; Xu, X.; Zhao, W.; Wang, X. Org. Lett. 2018,
20, 4749. (c) Zhang, W.; Yang, W.; Zhao, W. J. Org. Chem. 2020,
85, 8702.
© 2020. Thieme. All rights reserved. Synthesis 2021, 53, 1605–1618