10.1002/chem.201900498
Chemistry - A European Journal
COMMUNICATION
2004. (b) J.-P. Corbet, G. Mignani, Chem. Rev. 2006, 106, 2651. (c) A.
D. Meijere, S. Bräse, M. Oestreich, Metal-Catalyzed Cross-Coupling
Reactions and More, Wiley-VCH, Weinheim, 2014.
(d) M. Ueno, M. Yonemoto, M. Hashimoto, A. E. H. Wheatly, H. Naka, Y.
Kondo, Chem. Commun. 2007, 2264. (e) T. Imahori, C. Hori, Y. Kondo,
Adv. Synth. Catal. 2004, 346, 1090. (f) T. Imahori, Y. Kondo, J. Am.
Chem. Soc. 2003, 125, 8082.
[4]
[5]
For reviews of SNAr, see: (a) J. F. Bunnett, R. E. Zahler, Chem. Rev.
1951, 49, 273. (b) J. Miller, Aromatic Nucleophilic Substitution, Elsevier
Sci. Ltd., Amsterdam, 1968. (c) F. Terrier, Modern Nucleophilic Aromatic
Substitution, John Wiley & Sons, Inc., Weinheim, 2013.
[15] For the reactions by activating organosilanes and organozincs, see: (a)
K. Kobayashi, M. Ueno, H. Naka, Y. Kondo, Chem. Eur. J. 2009, 15,
9805. (b) K. Suzawa, M. Ueno, A. E. H. Wheatley, Y. Kondo, Chem.
Commun. 2006, 4850. (c) K. Kobayashi, M. Ueno, Y. Kondo, Chem.
Commun. 2006, 3128. (d) M. Ueno, C. Hori, K. Suzawa, M. Ebisawa, Y.
Kondo, Eur. J. Org. Chem. 2005, 1965.
(a) B.-T. Guan, S.-K. Xiang, B.-Q. Wang, Z.-P. Sun, Y. Wang, K.-Q. Zhao,
Z.-J. Shi, J. Am. Chem. Soc. 2008, 130, 3268. (b) L. Guo, X. Liu, C.
Baumann, M. Rueping, Angew. Chem. Int. Ed. 2016, 55, 15415. (c) M.
C. Schwarzer, R. Konno, T. Hojo, A. Ohtsuki, K. Nakamura, A. Yasutome,
H. Takahashi, T. Shimasaki, M. Tobisu, N. Chatani, S. Mori, J. Am. Chem.
Soc. 2017, 139, 10347. (d) J. Tang, M. Luo, X. Zeng, Synlett 2017, 28,
2577. (e) A. G. Sergeev, J. F. Hartwig, Science 2011, 332, 439. (f) J.
Cornella, E. Gómez-Bengoa, R. Martin, J. Am. Chem. Soc. 2013, 135,
1997. (g) M. Tobisu, T. Morioka, A. Ohtsuki, N. Chatani, Chem. Sci. 2015,
6, 3410. (h) M. Tobisu, T. Shimasaki, N. Chatani, Chem. Lett. 2009, 38,
710. (i) C. Zarate, R. Manzano, R. Martin, J. Am. Chem. Soc. 2015, 137,
6754. (j) C. Zarate, M. Nakajima, R. Martin, J. Am. Chem. Soc. 2017,
139, 1191.
[16] For related recent studies reported by other groups: (a) C. Luo, J. S.
Bandar, J. Am. Chem. Soc. 2018, 140, 3547. (b) A. Kondoh, T. Aoki, M.
Terada, Chem. Eur. J. 2017, 23, 2769. (c) D. Jardel, C. Davies, F. Peruch,
S. Massip, B. Bibal, Adv. Synth. Catal. 2016, 358, 1110. (d) S. Okusu, K.
Hirano, E. Tokunaga, N. Shibata, ChemistryOpen 2015, 4, 581. (e) G.-F.
Du, Y. Wang, C.-Z. Gu, B. Dai, L. He, RSC Adv. 2015, 5, 35421. (f) T.
Punirun, D. Soorukram, C. Kuhakarn, V. Reutrakul, M. Pohmakotr, Eur.
J. Org. Chem. 2014, 4162.
[17] (a) S. D. Roughley, A. M. Jordan, J. Med. Chem. 2011, 54, 3451. (b) J.
J. Li, Heterocyclic Chemistry in Drug Discovery, Wiley-Blackwell, New
York, 2013. (c) D. Lednicer, Strategies for Organic Drug Synthesis and
Design, 2nd ed.; John Wiley & Sons, Inc.: New York, 2008.
[6]
[7]
(a) A. K. Mishra, A. Verma, S. Biswas, J. Org. Chem. 2017, 82, 3403.
Also see the similar reaction using a catalytic amount of Bi(OTf)3: (b) M.
Murai, K. Origuchi, K. Takai, Chem. Lett. 2018, 47, 927.
[18] For examples of the synthetic methodologies of alkyl (hetero)aryl ethers,
(a) A. Williamson, Justus Liebigs Ann. Chem. 1851, 77, 37. (b) K. C. K.
Swamy, N. N. B. Kumar, E. Balaraman, K. V. P. P. Kumar, Chem. Rev.
2009, 109, 2551. (c) S. Enthaler, A. Company, Chem. Soc. Rev. 2011,
40, 4912. (d) A. S. Henderson, S. Medina, J. F. Bower, M. C. Galan, Org.
Lett. 2015, 17, 4846. (e) X. Shen, C. N. Neumann, C. Kleinlein, N. W.
Goldberg, T. Ritter, Angew. Chem. Int. Ed. 2015, 54, 5662. (f) D.-Y.
Wang, Z.-K. Yang, C. Wang, A. Zhang, M. Uchiyama, Angew. Chem. Int.
Ed. 2018, 57, 3641. (g) M. Thangaraj, S. S. Bhojgude, M. V. Mane, A. T.
Biju, Chem. Commun. 2016, 52, 1665. (h) G. Evano, J. Wang, A. Nitelet,
Org. Chem. Front. 2017, 4, 2480. (i) P. M. MacQueen, J. P. Tassone, C.
Diaz, M. Stradiotto, J. Am. Chem. Soc. 2018, 140, 5023.
(a) N. E. S. Tay, D. A. Nicewicz, J. Am. Chem. Soc. 2017, 139, 16100.
In this report, they noted that the usage of 2,2,2-trifluoroethanol as a
nucleophile in the presence of 1,1,3,3-tetramethylguanidine provides the
trifluoroethyl aryl ether. Other alcohols were, however, not used for the
CO bond formations. Photochemical and electrochemical reactions also
promote methoxy substitutions of nitro-substituted anisoles to form CC,
CN, and CO bonds. See: (b) J. Cornelisse, E. Havinga, Chem. Rev.
1975, 75, 353. (c) J. Cervelló, M. Figueredo, J. Marquet, M. Moreno-
Mañas, J. Bertrán, J. M. Lluch, Tetrahedron Lett. 1984, 25, 4147. (d) I.
Gallardo, G. Guirado, J. Marquet, J. Org. Chem. 2002, 67, 2548.
(a) T. Matsumoto, H. Kakigi, K. Suzuki, Tetrahedron Lett. 1991, 32, 4337.
(b) T. Hattori, A. Takeda, O. Yamabe, S. Miyano, Tetrahedron 2002, 58,
233. (c) R. Egris, M. Villacampa, J. C. Menéndez, Chem. Eur. J. 2009,
15, 10930.
[8]
[9]
[19] K. K. Krishnan, S. M. Ujwaldev, K. S. Sindhu, G. Anilkumar, Tetrahedron
2016, 72, 7393.
[20] S. Bhunia, G. G. Pawar, S. V. Kumar, Y. Jiang, D. Ma, Angew. Chem.
Int. Ed. 2017, 56, 16136.
(a) A. Kaga, H. Hayashi, H. Hakamata, M. Oi, M. Uchiyama, R. Takita, S.
Chiba, Angew. Chem. Int. Ed. 2017, 56, 11807. (b) J. H. Pang, A. Kaga,
S. Chiba, Chem. Commun. 2018, 54, 10324. (c) W. ten Hoeve, C. G.
Kruse, J. M. Luteyn, J. R. G. Thiecke, H. Wynberg, J. Org. Chem. 1993,
58, 5101.
[21] Williamson reaction, using alkyl (pseudo)halides and phenols, is a
common approach for the synthesis of alkyl aryl ethers. Developments
of the methodologies using alcohols as nucleophiles are, however, also
important from the following viewpoints: alcohols are usually readily
available compared with the corresponding alkyl (pseudo)halides; in the
Williamson reaction E2 elimination often occurs, particularly for sterically
hindered secondary alkyl (pseudo)halides, as a side reaction.
[22] (a) H. T. Momdani, R. C. Hartley, Tetrahedron Lett. 2000, 41, 747. (b) D.
Seebach, A. K. Beck, A. Studer, In Modern Synthetic Methods, 1995, B.
Ernst, C. Leumann Eds., VCH, Weinheim, 1995, Vol. 7.
[23] pKa value for the C(cp3)H bond at the -position of carbonyl of 1e is
25.6 (a) F. G. Bordwell, F. J. Cornforth, J. Org. Chem. 1978, 43, 1763.
For comparison, pKa value for the OH bond of EtOH is 29.8. (b) W. N.
Olmstead, Z. Margolin, F. G. Bordwell, J. Org. Chem. 1980, 45, 3295.
[24] In the recent report of methoxyalkoxy exchange reaction on
methoxyarenes using a stoichiometric amount of KO-t-Bu,11a carbonyl
groups (formyl, benzoyl, and acetyl) could not be used instead of a cyano
group as an activating group on methoxy arenes.
[10] Methoxy
substitutions
of
highly
electron-deficient
tris(2,6-
dimethoxyphenyl)methyl cation or alkoxy arenes bearing nitro groups
with amines proceed in the absence of another external base, see: (a) C.
Herse, D. Bas, F. C. Krebs, T. Bürgi, J. Weber, T. Wesolowski, B. W.
Laursen, J. Lacour, Angew. Chem. Int. Ed. 2003, 42, 3162. (b) H.
Noguchi, T. Hirose, S. Yokoyama, K. Matsuda, CrystEngComm, 2016,
18, 7377. (c) J. A. Orvik, J. F. Bunnett, J. Am. Chem. Soc. 1970, 92, 2417.
(d) C. A. Fyfe, S. W. H. Damji, A. Koll, J. Am. Chem. Soc. 1979, 101, 951.
[11] (a) X. Wang, C. Li, X. Wang, Q. Wang, X.-Q. Dong, A. Duan, W. Zhao,
Org. Lett. 2018, 20, 4267. (b) A. Gevorgyan, S. Mkrtchyan, T. Grigoryan,
V. O. Iaroshenko, Org. Chem. Front. 2017, 4, 2437. (c) P. J. Harvison, A.
J. Forte, S. D. Nelson, J. Med. Chem. 1986, 29, 1737.
[12] The reactions of highly electron-deficient 2,4-dinitroanisole with alcohols
were reported to occur in the presence of a catalytic amount of KOH. See,
Y. Ogata, M. Okano, J. Am. Chem. Soc. 1949, 71, 3211.
[25] For the related discussion, see: A. J. Birch, A. L. Hinde, L. Radom, J. Am.
Chem. Soc. 1980, 102, 6430.
[13] (a) R. Schwesinger, H. Schlemper, Angew. Chem., Int. Ed. 1987, 26,
1167. (b) R. Schwesinger, H. Schlemper, C. Hasenfratz, J. Willaredt, T.
Dambacher, T. Breuer, C. Ottaway, M. Fletschinger, J. Boele, H. Fritz, D.
Putzas, H. W. Rotter, F. G. Bordwell, A. V. Satish, G.-Z. Ji, E.-M. Peters,
K. Peters, H. G. von Schnering, L. Walz, Liebigs Ann. 1996, 1055.
[14] For the deprotonative transformations, see: (a) Y. Araki, K. Kobayashi,
M. Yonemoto, Y. Kondo, Org. Biomol. Chem. 2011, 9, 78. (b) Y. Hirono,
K. Kobayashi, M. Yonemoto, Y. Kondo, Chem. Commun. 2010, 46, 7623.
(c) H. Naka, D. Koseki, Y. Kondo, Adv. Synth. Catal. 2008, 350, 1901.
[26] It was previously reported that several methoxy heteroarenes such as
26b
benzothiazole-,26a,
quinazoline-,26b cinnoline-,26b and phthalazine-
derivatives,26b reacted with alcohols by using stoichiometric amounts of
NaOH, KOH, or Na-alkoxides, which was, however, inapplicable to the
reaction of quinoline-derivative.26b (a) H. H. Fox, M. T. Bogert, J. Am.
Chem. Soc. 1941, 63, 2996. (b) K. Adachi, Yakugaku Zasshi 1955, 75,
1426.
This article is protected by copyright. All rights reserved.