electron-rich phosphines,3 phosphorus,4 nitrogen,5 and
sulfur6-based palladacyles, and very recently, nucleophilic
carbene ligands.7,8 All of these catalyst systems suffer
from drawbacks of one kind or another, such as the high
ligand sensitivity toward air and moisture, the tedious
multistep synthesis, hence the high cost of the ligands,
and the use of various additives. On the other hand, the
operationally and economically more advantageous ligand-
free Heck reaction catalyst systems remain extremely
rare.9,10 Pd(OAc)2 has been traditionally used only as a
Liga n d -F r ee Heck Rea ction : P d (OAc)2 a s
a n Active Ca ta lyst Revisited
Qingwei Yao,* Elizabeth P. Kinney, and Zhi Yang†
Department of Chemistry and Biochemistry,
The Michael Faraday Laboratories, Northern Illinois
University, DeKalb, Illinois 60115-2862
qyao@niu.edu
Received May 14, 2003
(3) (a) Littke, A. F.; Fu, G. C. J . Org. Chem. 1999, 64, 10-11. (b)
Littke, A. F.; Fu, G. C. J . Am. Chem. Soc. 2001, 123, 6989-7000. (c)
Shaughnessy, K. H.; Kim, P.; Hartwig, J . F. J . Am. Chem. Soc. 1999,
121, 2123-2132. (d) Ehrentraut, A.; Zapf, A.; Beller, M. Synlett 2000,
1589-1592. (e) Bohm, V. P. W.; Herrmann, W. A. Chem. Eur. J . 2000,
6, 1017-1025.
(4) (a) Herrmann, W. A.; Brossmer, C.; O¨ fele, K.; Reisinger, C.-P.;
Priermeier, T.; Beller, M.; Fisher, H. Angew. Chem., Int. Ed. Engl.
1995, 34, 1844-1848. (b) Herrmann, W. A.; Brossmer, C.; Reisinger,
C.-P.; Priermeier, T. H.; O¨ fele, K.; Beller, M. Chem. Eur. J . 1997, 3,
1357-1364. (c) Ohff, M.; Ohff, A.; van der Boom, M. E. D.; Milstein,
D. J . Am. Chem. Soc. 1997, 119, 11687-11688. (d) Shaw, B. L.; Perera,
S. D.; Staley, E. A. Chem. Commun. 1998, 1361-1362. (e) Albisson,
D. A.; Bedford, R. B.; Scully, P. N. Chem. Commun. 1998, 2095-2096.
(f) Miyazaki, F.; Yamaguchi, K.; Shibasaki, M. Tetrahedron Lett. 1998,
39, 7379-7383. (g) Morales-Morales, D.; Redo´n, R. Yung, C.; J ensen,
C. M. Chem. Commun. 2000, 1619-1620. (h) Bedford, R. B.; Welch,
S. L. Chem. Commun. 2001, 129-130. (i) Gibson, S.; Foster, D. F.;
Eastam, G. R.; Tooze, R. P.; Cole-Hamilton, D. J . Chem. Commun.
2001, 779-780.
(5) (a) Ohff, M.; Ohff, A.; Milstein, D. Chem. Commun. 1999, 357-
358. (b) Iyer, S.; Ramesh, C. Tetrahedron Lett. 2000, 41, 8981-8984.
(c) Gai, X.; Grigg, R.; Ramzan, M. I.; Sridharan, V.; Collard, S.; Muir,
J . E. Chem. Commun. 2000, 2053-2054. (d) Alonso, D. A.; Na´jera, C.;
Pa´checo, M. C. Org. Lett. 2000, 2, 1823-1826. (e) Mun˜oz, M. P.; Mart´ın-
Matute, B.; Ferna´ndez-Rivas, C.; Ca´rdenas, D. J .; Echavarren, A. M.
Adv. Synth. Catal. 2001, 343, 338-342. (f) Beletskaya, I. P.; Kashin,
A. N.; Karlstedt, N. B.; Mitin, A. V.; Cheprakov, A. V.; Kazankov, G.
M. J . Organomet. Chem. 2001, 622, 89-96. (g) Alonso, D. A.; Na´jera,
C.; Pa´checo, M. C. Adv. Synth. Catal. 2002, 343, 172-183 (h) Rocaboy,
C.; Gladysz, J . A. Org. Lett. 2002, 4, 1993-1996. (i) Consorti, C. S.;
Zanini, M. L.; Leal, S.; Ebeling, G.; Dupont, J . Org. Lett. 2003, 5, 983-
986.
(6) (a) Gruber, A. S.; Zim, D. Z.; Ebeling, G.; Monteriro, A. L.;
Dupont, J . Org. Lett. 2000, 2, 1287-1290. (b) Bergbreiter, D. E.;
Osburn, P. L.; Wilson, A.; Sink, E. J . Am. Chem. Soc. 2000, 122, 9058-
9064.
(7) For selected recent reviews, see: (a) Bourissou, D.; Guerret, O.;
Gabba¨ı, F. P.; Bertrand, C. B Chem. Rev. 2000, 100, 39-92. (b)
Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290-1309.
(8) For an elegant use of mixed phosphine-carbene ligand in the
Heck reaction, see: Nolan, S. P.; Lee, H. M.; Yang, C. Org. Lett. 2001,
3, 1511-1514.
(9) For discussions on a ligand-free Heck reaction, see: (a) Reference
2f. (b) Reetz, M. T.; Westermann, E. Angew. Chem., Int. Ed. 2000, 39,
165-168. Notable recent examples of a ligand-free Heck reaction: (c)
Sengupta, S.; Bhattacharyya, S. Tetrahedron Lett. 1995, 36, 4475-
4478. (d) Drisp, G.; Gebauer, M. G. Tetrahedron 1996, 52, 12465-
12474. (e) Desmazeau, P.; Legros, J .-Y.; Fiaud, J .-C. Tetrahedron Lett.
1998, 39, 6707-6710. (f) Reetz, M. T.; Lohmer, G.; Schwickardi, R.
Angew. Chem., Int. Ed. 1998, 37, 481-483. (g) Reetz, M. T.; Wester-
mann, E.; Lohmer, R.; Lohmer, G. Tetrahedron Lett. 1998, 39, 8449-
8452. (h) Bråthe, A.; Gundersen, L.-L.; Rise, F.; Eriksen, A. B.; Vollsnes,
A. V.; Wang, L. Tetrahedron 1999, 55, 211-228. (i) Carmichael, A. J .;
Earle, M. J .; Holbrey, J . D.; McCormac, P. B.; Seddon, K. R Org. Lett.
1999, 1, 997-1000. (j) de Vries, A. H. M.; Parlevliet, F. J .; Schmieder-
Van de Vondervoort, L.; Mommers, J . H. M.; Henderickx, H. J . W.;
Walet, M. A. M.; de Vries, J . G. Adv. Synth. Catal. 2002, 344, 996-
1002. (k) Okubo, K.; Shirai, M.; Yokoyama, C. Tetrahedral Lett. 2002,
43, 7115-7118. (k) Chandrasekhar, S.; Narsihmulu, C.; Sultana, S.
S.; Reddy, N. R. Org. Lett. 2002, 4, 4399-4401.
Abstr a ct: Palladium acetate was shown to be an extremely
active catalyst for the Heck reaction of aryl bromides. Both
the base and the solvent were found to have a fundamental
influence on the efficiency of the reaction, with K3PO4 and
N,N-dimethylacetamide being the optimal base and solvent,
respectively.
Palladium-catalyzed coupling of olefins with aryl and
vinyl halides, known as the Heck reaction,1,2 is one of
the prime tools for carbon-carbon bond formation in
organic synthesis. This powerful reaction can lead to the
construction of a C-C bond at an unfunctionalized
olefinic carbon in a single transformation employing a
wide variety of aryl and vinyl halide substrates. Unlike
other C-C bond-forming reactions that involve a polar
addition, the Heck reaction tolerates almost any sensitive
functionality such as unprotected amino, hydroxyl, al-
dehyde, ketone, carboxy, ester, cyano, and nitro groups.1
However, the traditional Heck reaction is typically
performed with 1-5 mol % of a palladium catalyst along
with a phosphine ligand in the presence of a suitable
base. Under these conditions, the maximum turnover
numbers (TON) are only 20-100 and large-scale indus-
trial application is not practical.2i In recent years, numer-
ous efforts have been made to develop more efficient
catalyst systems. A major challenge in this area has been
the development of new Heck reaction catalysts with
higher TON and with enhanced reactivity toward deac-
tivated aryl bromides and, ultimately, toward the more
readily available aryl chlorides. Significant advances
have been made in the past several years in meeting
these goals. These include the use of sterically bulky and
* To whom correspondence should be addressed. Phone: (+1) 815-
753-6841. Fax: (+1) 815-753-4802.
† Permanent address: Shanxi Institute of Chemical Engineering
Design, Taiyuan, Shanxi 030024, China.
(1) Heck, R. F. Acc. Chem. Res. 1979, 12, 146-152.
(2) Selected leading reviews and monographs on the Heck reaction
and related reactions promoted by Pd catalysts: (a) Heck, R. F.
Palladium Reagents in Organic Synthesis; Academic Press: London,
UK, 1985. (b) Heck, R. F. In Comprehensive Organic Synthesis; Trost,
B. M., Flemming, I., Eds.; Pergamon: New York, 1991; Vol 4, Chapter
4.3. (c) Tsuji, J . Palladium Reagents and Catalysts; J ohn Wiley:
Chichester, UK, 1995. (d) Bra¨se, S.; de Meijere, A. In Metal Catalyzed
Cross Coupling Reactions; Diederich, F., Stang, P. J ., Eds. Wiley: New
York, 1998; Chapter 3. (e) de Meijere, A.; Meyer, F. E. Angew. Chem.,
Int. Ed. Engl. 1994, 33, 2379-2411. (f) Crisp, G. T. Chem. Soc. Rev.
1998, 27, 427-436. (g) Casey, M.; Lawless, J .; Shirran, C. Polyhedron
2000, 19, 517-520. (h) Beletskaya, I. P.; Cheprokov, A. Chem. Rev.
2000, 100, 3009-3066. For a recent discussion on the industrial aspects
of the Heck reaction, see: (i) Tucker, C. E.; de Vries, J . G. Top. Catal.
2002, 19, 111-118.
(10) For a ligand-free Heck reaction under phase-transfer conditions
(J effery’s conditions), see: (a) J effery, T. Tetrahedron 1996, 52, 10113-
10130. Some impressive examples: (b) Reiser, O.; Reichow, S.; de
Meijere, A. Angew. Chem., Int. Ed. Engl. 1987, 27, 1277-1278. (c)
Gozzi, C.; Lavenot, L.; Ilg, K.; Penalva, V.; Lemaire, M. Tetrahedron
Lett. 1997, 38, 8867-8879.
10.1021/jo034646w CCC: $25.00 © 2003 American Chemical Society
Published on Web 08/16/2003
7528
J . Org. Chem. 2003, 68, 7528-7531