Organic Letters
Letter
ORCID
of Hoveyda−Grubbs complexes used by us in alkyne reduction,
we decided to test a model one-pot metathesis−semireduction.
To do so, we carried out a single-pot reaction of 1j which
consisted of ring closing metathesis (RCM) and triple C−C
bond hydrogenation (Scheme 2). After completion of RCM,
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Scheme 2. One-Pot RCM−Semireduction and Ortep Drawing
of Product (E)-2m
The authors are grateful to the National Science Centre (Poland)
for the NCN Opus Grant No. UMO-2013/09/B/ST5/03535.
We wish to thank Paweł Szczepanik (Institute of Organic
Chemistry, PAS) for providing us with tolanes 1b−1g.
REFERENCES
(1) Lindlar, H.; Dubuis, R. Org. Synth. 1966, 46, 89−91.
(2) (a) Kluwer, A. M.; Elsevier, C. J. Elsevier in Handbook of
Homogeneous Hydrogenation, Vol. 1; de Vries, J. G., Elsevier, C. J., Eds.;
Wiley-VCH: Weinheim, 2007; pp 375−411. (b) Rylander, P. N.
Hydrogenation Methods; Academic Press: London, 1985.
■
(3) For a related discussion, see: (a) Radkowski, K.; Sundararaju, B.;
Furstner, A. Angew. Chem., Int. Ed. 2013, 52 (1), 355−360 and
̈
references cited herein. (b) Leutzsch, M.; Wolf, L. M.; Gupta, P.; Fuchs,
M.; Thiel, W.; Fares
̀
, C.; Furstner, A. Angew. Chem., Int. Ed. 2015, 54
̈
(42), 12431−12436. (c) Fuchs, M.; Furstner, A. Angew. Chem., Int. Ed.
̈
a
b
0.04 equiv of Hov II, 40 °C, 5 h, THF. 0.2 equiv of NaH, 50 equiv
2015, 54 (13), 3978−3982.
of HCO2H, 80 °C, 6 h, THF.
(4) Karunananda, M. K.; Mankad, N. P. J. Am. Chem. Soc. 2015, 137
(46), 14598−14601.
(5) Neumann, K. T.; Klimczyk, S.; Burhardt, M. N.; Bang-Andersen,
B.; Skrydstrup, T.; Lindhardt, A. T. ACS Catal. 2016, 6 (7), 4710−4714.
(6) Chen, Z.; Luo, M.; Wen, Y.; Luo, G.; Liu, L. Org. Lett. 2014, 16
(11), 3020−3023.
formic acid and sodium hydride were added into the reaction
mixture to convert Hov II into the catalytic system for
semireduction,11 leading to product (E)-2m in a total yield of
49% after two steps. Although product (E)-2m can be obtained
by other means (in two or more steps), this example is useful to
demonstrate the high selectivity of this reduction system.
Notably, the C−C double bond formed during the RCM
step did not undergo further reduction to a single bond or
isomerization. The latter transformation (a double bond shift) is
a rather common process, triggered by decomposed Ru olefin
metathesis catalysts.16
(7) Srimani, D.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. Angew.
Chem., Int. Ed. 2013, 52 (52), 14131−14134.
(8) Fu, S.; Chen, N.-Y.; Liu, X.; Shao, Z.; Luo, S.-P.; Liu, Q. J. Am.
Chem. Soc. 2016, 138 (27), 8588−8594.
(9) Richmond, E.; Moran, J. J. Org. Chem. 2015, 80 (13), 6922−6929.
(10) (a) Grubbs, R., Wenzel, A., O’Leary, D., Khosravi, E., Eds.
Handbook of Metathesis, 2nd ed.; Viley-VCH: Weinheim, Germany,
2015. (b) Grela, K., Ed. Olefin Metathesis Theory and Practice; Wiley:
Hoboken, NJ, 2014.
Outlined herein are our preliminary results on a ligand-
controlled semihydrogenation of alkynes to form either (E)- or
(Z)-alkenes using classical Hoveyda−Grubbs olefin metathesis
catalysts and formic acid as a safe hydrogen source. Importantly,
the second generation of benzylidene ruthenium complexes
led almost exclusively to (E)-selective alkyne hydrogenation,
rendering this method to be stereocomplementary to the
classical Lindlar reduction. The metathetic capability of the
ruthenium complexes used by us for the reduction may be also
utilized in tandem sequences composed of olefin metathesis−
alkyne reduction. As the developed system operates under mild
conditions and tolerates a host of sensitive functional groups we
believe that it holds great promise for future applications in
target-oriented syntheses.
́
(11) Zielinski, G. K.; Samojłowicz, C.; Wdowik, T.; Grela, K. Org.
Biomol. Chem. 2015, 13 (9), 2684−2688.
(12) (a) Luo, F.; Pan, C.; Wang, W.; Ye, Z.; Cheng, J. Tetrahedron
2010, 66 (6), 1399−1403. (b) Shirakawa, E.; Otsuka, H.; Hayashi, T.
Chem. Commun. 2005, No. 47, 5885−5886. (c) Furukawa, S.; Komatsu,
T. ACS Catal. 2016, 6 (3), 2121−2125. (d) Liu, Y.; Hu, L.; Chen, H.;
Du, H. Chem. - Eur. J. 2015, 21 (8), 3495−3501.
(13) Yin, Han et al. reported on the isomerization of Z- to E-alkenes
during a palladium-catalyzed hydrogen-transfer reaction with 25%
aqueous formic acid as a hydrogen source. See: Shen, R.; Chen, T.; Zhao,
Y.; Qiu, R.; Zhou, Y.; Yin, S.; Wang, X.; Goto, M.; Han, L.-B. J. Am.
Chem. Soc. 2011, 133 (42), 17037−17044.
(14) In the case of Milstein’s Fe-based hydrogenation catalyst, it was
also observed that diarylacetylenes bearing CN groups require a higher
catalyst loading and longer reaction times to reach full conversion to the
alkene. See ref 8.
ASSOCIATED CONTENT
* Supporting Information
(15) (a) Fogg, D. E.; dos Santos, E. N. Coord. Chem. Rev. 2004, 248
■
S
(21−24), 2365−2379. (b) Zielinski, G. K.; Grela, K. Chem. - Eur. J. 2016,
́
22 (28), 9440−9454.
The Supporting Information is available free of charge on the
(16) (a) Schmidt, B. Chem. Commun. 2004, No. 6, 742−743.
(b) Schmidt, B. J. Org. Chem. 2004, 69 (22), 7672−7687.
Crystallographic data (CIF)
Full experimental details, copies of spectral data, X-ray
AUTHOR INFORMATION
Corresponding Author
■
D
Org. Lett. XXXX, XXX, XXX−XXX