1218 J ournal of Medicinal Chemistry, 1996, Vol. 39, No. 6
Coric et al.
(16) Patchett, A. A.; Harris, E.; Tristram, E. W.; Wyvratt, M. J .; Wu,
H. T.; Taub, D.; Peterson, E. R.; Ikeler, T. J .; ten Brocke, J .;
Payne, L. G.; Ondeyka, D. L.; Thorsett, E. D.; Greenlee, W. J .;
Lohr, N. S.; Hoffsommer, R. D.; J oshua, H.; Ruyle, W. V.;
Rothrock, J . W.; Aster, S. D.; Maycock, A. L.; Robinson, F.M.;
Hirschmann, R.; Sweet, C. S.; Ulm, E. H.; Gross, D. M.; Vassil,
T. C.; Stone, C. A. A new class of angiotensin converting enzyme
inhibitors. Nature (London) 1980, 288, 280-283.
(17) Fournie´-Zaluski, M. C.; Llorens, C.; Gacel, G.; Malfroy, B.;
Swertz, J . P.; Lecomte, J . M.; Schwartz, J . C.; Roques, B. P.
Synthesis and biological properties of highly potent enkephali-
nase inhibitors. Peptides 1980. In Proceedings of the sixteeth
European Peptide Symposium; Brunfeldt, K., Ed.; Scriptor:
Copenhagen 1981; pp 476-481.
(18) Gordon, E. M.; Cushman, D. W.; Tung, R.; Cheung, H. S.; Wang,
F. L.; Delaney, N. G. Rat brain enkephalinase: characterization
of the active site using mercaptopropanoyl amino acids inhibitors
and comparison with angiotensin converting-enzyme. Life Sci.
1983, 33 (Suppl. 1), 113-116.
(19) Fournie´-Zaluski, M. C.; Lucas, E.; Waksman, G.; Roques, B. P.
Differences in the structural requirements for selective interac-
tion with neutral endopeptidase (enkephalinase) or angiotensin
converting enzyme: molecular investigation by use of new thiol
inhibitors. Eur. J . Biochem. 1984, 139, 267-274.
(Ile)), 1.04 (CHâ(Ile)), 1.25 (CH3(Ala)), 1.30-1.50 (CH2γ(Ile)),
1.65 (CH2â(Ind)), 2.38 (SH), 3.60 (CHSH), 4.50 (CHR(Ala)),
5.10 (CHR(Ind)), 7.00-7.18 (Ar(Ind)), 8.10 (NH), 12.36 (COOH).
Com p ou n d 36: white solid mp >250 °C dec; Rf (C) 0.54;
HPLC tR (50% B) 9.03 min; 1H NMR ∂ (ppm) 0.80-0.90 (CH3-
(Val + Ile)), 1.00-2.25 (CHâ(Ile) + CH2γ(Ile) + CHâ(Val) +
CH2(Phi)), 2.40 (SH), 3.58 (CHSH), 4.12 (CHR(Phi)), 4.25
(CHR(Ile)), 8.30 (NH), 12.36 (COOH).
Com p ou n d 37 (mixture of stereoisomers): oily product; Rf
(B) 0.48; HPLC tR (50% B) 9.3, 9.8, 10.3, and 10.6 min; 1H NMR
∂ (ppm) from 0.70 to 2.20 (CH2â,γ,∂(Pip) + CH3(Val) + CH3â-
(Ph) + CHâ(Val)), 2.60 (SH), 2.95 (CHâ(Ph)), 3.60 (CHSH),
3.70-3.95 (CH2∂(Pip)), 4.30 (CHR(Val)), 5.05 (CHR(Pip)), 7.20
(CH(Ar)), 8.20 (NH), 12.60 (COOH).
Ack n ow led gm en t. The authors would like to thank
C. Dupuis for expert manuscript drafting and Dr. A.
Beaumont for stylistic revision. Particular acknowl-
edgements are due to V. Thery and S. Antonczak for
their help in computer-modeling studies. The work was
supported by grants from the “Institut de Recherches
Servier”.
(20) Roques, B. P.; Noble, F.; Dauge´, V.; Fournie´-Zaluski, M. C.;
Beaumont, A. Neutral endopeptidase 24.11; structure, inhibition,
and experimental and clinical pharmacology. Pharmacol. Rev.
1993, 45, 87-146.
(21) Wyvratt, M. J .; Patchett, A. A. Recent developments in the
design of angiotensin converting enzyme inhibitors. Med. Res.
Rev. 1985, 5, 483-531.
(22) Gros, C.; Noel, N.; Souque, A.; Schwartz, J . C.; Danvy, D.;
Plaquevent, J . C.; Duhamel, L.; Duhamel, P.; Lecomte, J . M.;
Bralet, J . Mixed inhibitors of angiotensin-converting enzyme
(E.C.3.4.15.1) and enkephalinase (E.C.3.4.24.11): Rational de-
sign, properties and potential cardiovascular applications of
glycopril and alatriopril. Proc. Natl. Acad. Sci. U.S.A. 1991, 88,
4210-4214.
(23) Fournie´-Zaluski, M. C.; Coric, P.; Turcaud, S.; Rousselet, N.;
Gonzalez, W.; Barbe, B.; Pham, I.; J ullian, N.; Michel, J . B.;
Roques, B. P. New dual inhibitors of neutral endopeptidase and
angiotensin converting enzyme: Rational design bioavailability
and pharmacological responses in experimental hypertension.
J . Med. Chem. 1994, 37, 1070-1083.
(24) Fournie´-Zaluski, M. C.; Gonzalez, W.; Turcaud, S.; Pham, I.;
Roques, B. P.; Michel, J . B. Dual inhibition of angiotensin
converting enzyme and neutral endopeptidase by the orally
active inhibitor mixanpril: a potential therapeutic approach in
hypertension. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 4072-4076.
(25) (a) Flynn, G. A.; Beight, D. W.; Mehdi, S.; Koehl, J . R.; Giroux,
E. L.; French, J . F.; Hake, P. W.; Dage, R. C. Application of a
conformationally restricted Phe-Leu dipeptide mimetic to the
Refer en ces
(1) Roques, B. P.; Beaumont, A. Neutral endopeptidase 24.11
inhibitors: from analgesic to antihypertensives? Trends Phar-
macol. Sci. 1990, 11, 245-249.
(2) Kenny, A. J .; Stephenson, S. L. Role of endopeptidase 24.11 in
the inactivation of atrial natriuretic peptides. FEBS Lett. 1988,
232, 1-8.
(3) Ura, N.; Carretero, O. A.; Erdos, E. G. Role of renal endopepti-
dase 24.11 in kinin metabolism in vitro and in vivo. Kidney
Intern. 1987, 32, 507-513.
(4) Erdo¨s, E. G.; Skidgel, R. A. Structure and function of human
angiotensin I converting enzyme. Biochem. Soc. Trans. 1985,
13, 42-44.
(5) Margulies, K. B.; Perrella, M. A.; McKinley, L. J .; Burnett, J .
C. Angiotensin inhibition potentiates the renal responses to
neutral endopeptidase inhibition in dogs with congestive heart
failure. J . Clin. Invest. 1991, 88, 1636-1642.
(6) Motwani, J . G.; Lang, C. C.; Cramb, G.; Struthers, A. D.
Natriuretic response to neutral endopeptidase inhibition is
blunted by enalapril in healthy men. Hypertension 1995, 25,
637-642.
(7) Seymour, A. A.; Asaad, M. M.; Lanoce, V. M.; Langenbacher, K.
M.; Fennell, S. A.; Rogers, W. L. Systemic hemodynamics, renal
function and hormonal levels during inhibition of neutral
endopeptidase 3.4.24.11 and angiotensin converting enzyme in
conscious dogs with pacing-induced heart failure. J . Pharmacol.
Exp. Ther. 1993, 266, 872-883.
(8) Gonzalez-Vera, W.; Fournie´-Zaluski, M. C.; Pham, I.; Laboulan-
dine, I.; Roques, B. P.; Michel, J . B. Hypotensive and natriuretic
effects of RB 105, a new dual inhibitor of angiotensin converting
enzyme and neutral endopeptidase in hypertensive rats. J .
Pharmacol. Exp. Ther. 1995, 272, 343-351.
(9) Trippodo, N. C.; Panchal, B. C.; Fox, M. Repression of angio-
tensin II and potentiation of bradykinin contribute to the
synergistic effects of dual metalloprotease inhibition in heart
failure. J . Pharmacol. Exp. Ther. 1995, 272, 619-627.
(10) Devault, A.; Lazure, C.; Nault, C.; Le Moual, H.; Seidah, N. G.;
Chretien, H.; Kahn, P.; Powell, J .; Mallet, J .; Beaumont, A.;
Roques, B. P.; Crine, P.; Boileau, G. Amino acid sequence of
rabbit kidney neutral endopeptidase 24.11 (enkephalinase)
deduced from a complementary DNA. EMBO J . 1987, 6, 1317-
1322.
(11) Soubrier, F.; Alhenc-Gelas, F.; Hubert, C.; Allegrini, J .; J ohn,
H.; Tregear, G.; Corvol, P. Two putative active centers in human
angiotensin I-converting enzyme revealed by molecular cloning.
Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 9386-9390.
(12) Erdo¨s, E. G.; J ohnson, A. R.; Boyden, N. T. Hydrolysis of
enkephalin by cultured human endothelial cells and by purified
peptidyl peptidase. Biochem. Pharmacol. 1978, 27, 843-848.
(13) Roques, B. P.; Fournie´-Zaluski, M. C.; Soroca, E.; Lecomte, J .
M.; Malfroy, B.; Llorens, C.; Schwartz, J . C. The enkephalinase
inhibitor thiorphan shows antinociceptive activity in mice.
Nature (London) 1980, 288, 286-288.
(14) Haslanger, M. F.; Sybertz, E. J .; Neustadt, B. R.; Smith, E. M.;
Nechuta, T. L.; Berger, J . Carboxyalkyl dipeptides with atrial
natriuretic factor potentiating and antihypertensive activity. J .
Med. Chem. 1989, 32, 737-739.
(15) Cushman, D. W.; Cheung, H. S.; Sabo, E. F.; Ondetti, M. A.
Design of potent competitive inhibitors of angiotensin converting
enzyme. Carboxy alkanoyl and mercapto alkanoyl amino acids.
Biochemistry 1977, 16, 5484-5491.
design of a combined inhibitor of angiotensin
I converting
enzyme and neutral endopeptidase 24.11. J . Med. Chem. 1993,
36, 2420-2423. (b) Stanton, J . L.; Sperbeck, D. M.; Trapani, A.
J .; Cote, D.; Sakane, Y.; Berry, C. J .; Ghai, R. D. Heterocyclic
lactam derivatives as dual angiotensin converting enzyme and
neutral endopeptidase 24.11 inhibitors. J . Med. Chem. 1993, 36,
3829-3833. (c) Robl, J . A.; Simpkins, L. M.; Stevenson, J .; Sun,
C.-Q.; Murugesan, N.; Barrish, J . C.; Asaad, M. M.; Bird, J . E.;
Schaeffer, T. R.; Trippodo, N. C.; Petrillo, E. W.; Karanewsky,
D. S. Dual metalloprotease inhibitors. I. constrained peptido-
mimetics of mercaptoacyl dipeptides. Bioorg. Med. Chem. Lett.
1994, 4, 1789-1794. (d) Robl, J . A.; Simpkins, L. M.; Sulsky,
R.; Sieber-McMaster, E.; Stevenson, J .; Kelly, F.; Sun, C.-Q.;
Misra, R. N.; Ryono, D. E.; Asaad, M. M.; Bird, J . E.; Trippodo,
N. C.; Karanewsky, D. S. Dual metalloprotease inhibitors. II.
Effect of substitution and stereochemistry on benzazepinone
based mercaptoacetyls. Bioorg. Med. Chem. Lett. 1994, 4, 1795-
1800. (e) Robl, J . A.; Sun, C.-Q.; Simpkins, L. M.; Ryono, D. E.;
Barrish, C.; Karanewsky, D. S.; Asaad, M. M.; Schaeffer, T. R.;
Trippodo, N. C. Dual metalloprotease inhibitors. III. Utilization
of bicyclic and monocyclic diazepinone based mercaptoacetyls.
Bioorg. Med. Chem. Lett. 1994, 4, 2055-2060. (f) Das, J .; Robl,
J . A.; Reid, J . A.; Sun, C.-Q.; Misra, R. N.; Brown, B. R.; Ryono,
D. E.; Asaad, M. M.; Bird, J . E.; Trippodo, N. C.; Petrillo, E. W.;
Karanewsky, D. S. Dual metalloprotease inhibitors. IV. Utiliza-
tion of thiazepines and thiazines as constrained peptidomimetic
surrogates in mercaptoacyl dipeptides. Bioorg. Med. Chem. Lett.
1994, 4, 2193-2198. (g) Slusarchyk, W. A.; Robl, J . A.; Taunk,
P. C.; Asaad, M. M.; Bird, J . E.; DiMarco, J .; Pan, Y. Dual
metalloprotease inhibitors. V. Utilization of bicyclic azepinone-
thiazolidines and azepinonetetrahydrothiazines in constrained
peptidomimetics of mercaptoacyl dipeptides. Bioorg. Med. Chem.
Lett. 1995, 5, 753-758. (h) Bhagwat, S. S.; Fink, C. A.; Gude,
C.; Chan, K.; Qiao, Y.; Sakane, Y.; Berry, C.; Ghai, R. D.
R-Mercaptoacyl dipeptides that inhibit angiotensin converting
enzyme and neutral endopeptidase 24.11. Bioorg. Med. Chem.
Lett. 1995, 5, 735-738.