8738
J. Am. Chem. Soc. 1997, 119, 8738-8739
Asymmetric Transfer Hydrogenation of
r, â-Acetylenic Ketones
the first asymmetric transfer hydrogenation of acetylenic ketones
using chiral Ru(II) catalysts and 2-propanol as the hydrogen
9
donor. This method allows highly selective reduction of
structurally diverse acetylenic ketones to propargylic alcohols
of high enantiomeric purity leaving the CtC bond intact (eq
Kazuhiko Matsumura, Shohei Hashiguchi,
Takao Ikariya, and Ryoji Noyori*
,
†
1
).
ERATO Molecular Catalysis Project
Japan Science and Technology Corporation
247 Yachigusa, Yakusa-cho, Toyota 470-03, Japan
1
ReceiVed May 15, 1997
Chiral propargylic alcohols are useful building blocks for the
1
synthesis of various biologically active and structurally interest-
2
ing compounds. Compounds of this important class had been
prepared by stoichiometric asymmetric reduction of acetylenic
3
ketones with chirally modified metal hydrides, reductive
4
cleavage of chiral acetylenic acetals, enantioselective alkyny-
5
6
lation of aldehydes, or enzymatic transformations until Corey
and Parker developed the catalytic asymmetric hydroboration
of R,â-ynones with chiral oxazaborolidines.7 Although asym-
metric hydrogenation would be the most straightforward ap-
proach, none of the currently available catalyst systems can
convert R,â-acetylenic ketones to propargylic alcohols in a
chemoselective and enantioselective manner.8 Here, we describe
†
Author to whom correspondence should be addressed at the follow-
ing: Department of Chemistry, Nagoya University, Chikusa, Nagoya 464-
0
1, Japan.
(1) For selected examples, see: [pheromones] (a) Mori, K.; Akao, H.
Tetrahedron Lett. 1978, 43, 4127-4130. (b) Vigneron, J. P.; Bloy, V.
Tetrahedron Lett. 1980, 21, 1735-1738. [prostaglandins] (c) Fried, J.; Sih,
J. C. Tetrahedron Lett. 1973, 40, 3899-3902. (d) Kluge, A. F.; Kertesz,
D. J.; O-Yang, C.; Wu, H. Y. J. Org. Chem. 1987, 52, 2860-2868. [steroids]
A search for the appropriate conditions using 1a, known as
1
0
(e) Johnson, W. S.; Brinkmeyer, R. S.; Kapoor, V. M.; Yarnell, T. M. J.
a difficult substrate, revealed that the chiral 16-electron Ru
Am. Chem. Soc. 1977, 99, 8341-8343. [alkaloids] (f) Overman, L. E.; Bell,
K. L. J. Am. Chem. Soc. 1981, 103, 1851-1853. [palytoxins] (g) Leder, J.;
Fujioka, H.; Kishi, Y. Tetrahedron Lett. 1983, 24, 1463-1466. (h) Cheon,
S. H.; Christ, W. J.; Hawkins, L. D.; Jin, H.; Kishi, Y.; Taniguchi, M.
Tetrahedron Lett. 1986, 27, 4759-4762. [vitamins E and K] (i) Cohen,
N.; Lopresti, R. J.; Neukom, C.; Saucy, G. J. Org. Chem. 1980, 45, 582-
11
complexes 3 are excellent catalysts for the carbonyl-selective
asymmetric reduction with 2-propanol (method A). The asym-
metric reaction, normally with a 0.1 to 1 M 2-propanol solution
of the ketone, proceeds under neutral conditions at room
temperature with a substrate/catalyst molar ratio (S/C) of 100-
200, or even 1000 in certain cases, giving 2a in up to 98% ee
588. [roridins and trichoverrins] (j) Roush, W. R.; Spada, A. P. Tetrahedron
Lett. 1982, 23, 3773-3776. [cytochalasins] (k) Stork, G.; Nakamura, E. J.
Am. Chem. Soc. 1983, 105, 5510-5512. [sterpurene] (l) Gibbs, R. A.;
Okamura, W. H. J. Am. Chem. Soc. 1988, 110, 4062-4063. [microcystins]
(
enantiomeric excess) and in >99% yield. The Ru catalysts 3
can be conveniently generated in situ by mixing the 18-electron
(
m) Kim, H. Y.; Stein, K.; Toogood, P. L. J. Chem. Soc., Chem. Commun.
12
1
996, 1683-1684. [methylenolactocin] (n) Zhu, G.; Lu, X. J. Org. Chem.
precursors 4 and KOH in a 1:1.2 molar ratio (method B) or
6
1
995, 60, 1087-1089.
simply [RuCl2(η -arene)]2 (5), (1S,2S)- or (1R,2R)-N-(p-toluene-
(
2) (a) Colas, Y.; Cazes, B.; Gore, J. Tetrahedron Lett. 1984, 25, 845-
sulfonyl)-1,2-diphenylethylenediamine, and KOH in 2-propanol
8
3
4
48. (b) Corey, E. J.; Boaz, N. W. Tetrahedron Lett. 1984, 25, 3055-
058. (c) Henderson, M. A.; Heathcock, C. H. J. Org. Chem. 1988, 53,
736-4745. (d) Burger, A.; Hetru, C.; Luu, B. Synthesis 1989, 2, 93-97.
(
Ru:diamine:KOH ) 1:1:2.5) (method C), only if a ketonic
substrate is insensitive to the KOH treatment. The mesitylene
and p-cymene complexes 3a and 3b worked equally well, while
the former was somewhat more reactive. A combined catalyst
(e) Elsevier, C. J.; Vermeer, P. J. Org. Chem. 1989, 54, 3726-3730. (f)
Marshall, J. A.; Wang, X.-j. J. Org. Chem. 1992, 57, 1242-1252. (g) Myers,
A. G.; Zheng, B. J. Am. Chem. Soc. 1996, 118, 4492-4493. (h) Mukai, C.;
Kataoka, O.; Hanaoka, M. J. Org. Chem. 1993, 58, 2946-2952. (i) Botta,
M.; Summa, V.; Corelli, F.; Pietro, G. D.; Lombardi, P. Tetrahedron:
Asymmetry 1996, 7, 1263-1266.
6
system consisting of [RuCl2(η -C6(CH3)6)]2, (1S,2S)-2-(methyl-
amino)-1,2-diphenylethanol, and KOH (Ru:amino alcohol:KOH
1
3
)
1:1:2.5) is also usable (method D).
(
3) (a) Brinkmeyer, R. S.; Kapoor, V. M. J. Am. Chem. Soc. 1977, 95,
8
339-8341. (b) Noyori, R.; Tomino, I.; Yamada, M.; Nishizawa, M. J.
Various achiral acetylenic ketones 1 can be reduced to chiral
Am. Chem. Soc. 1984, 106, 6717-6725. (c) Midland, M. M.; Tramontano,
14
propargylic alcohols 2 in good yields. Table 1 lists some
A.; Kazubski, A.; Graham, R. S.; Tsai, D. J. S.; Cardin, D. B. Tetrahedron
examples. The ee values are consistently high regardless of
1
984, 40, 1371-1380. (d) Ramachandran, P. V.; Teodorovi c´ , A. V.;
2
10
Rangaishenvi, M. V.; Brown, H. C. J. Org. Chem. 1992, 57, 2379-2386.
e) Bach, J.; Berenguer, R.; Garcia, J.; Loscertales, T.; Vilarrasa, J. J. Org.
Chem. 1996, 61, 9021-9025.
the bulkiness of R substituents from methyl to tert-butyl. Both
(
(8) The RuCl2(phosphine)n/1,2-diamine/KOH system cannot be used:
Ohkuma, T.; Ooka, H.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995,
117, 10417-10418.
(
4) Ishihara, K.; Mori, A.; Arai, I.; Yamamoto, H. Tetrahedron Lett. 1986,
6, 983-986.
5) (a) Mukaiyama, T.; Suzuki, K.; Soai, K.; Sato, T. Chem. Lett. 1979,
2
(
(9) Noyori, R.; Hashiguchi, S. Acc. Chem. Res. 1997, 30, 97-102.
(10) The methyl ketone was converted to the alcohol in 96% ee and in
80% yield only with neat B-(iso-2-n-propylapopinocampheyl)-9-borabicyclo-
[3.3.1]nonane (Prapine-Borane) (Brown, H. C.; Ramachandran, P. V.;
Weissman, S. A.; Swaminathan, S. J. Org. Chem. 1990, 55, 6328-6333),
4
47-448. (b) Mukaiyama, T.; Suzuki, K. Chem. Lett. 1980, 255-256. (c)
Tombo, G. M. R.; Didier, E.; Loubinoux, B. Synlett 1990, 547-548. (d)
Niwa, S.; Soai, K. J. Chem. Soc., Perkin Trans. 1 1990, 937-943. (e) Corey,
E. J.; Cimprich, K. A. J. Am. Chem. Soc. 1994, 116, 3151-3152.
7b
(
6) (a) Bradshaw, C. W.; Hummel, W.; Wong, C.-H. J. Org. Chem. 1992,
whereas the Corey method afforded quantitatively the product in 87% ee.
5
7, 1532-1536. (b) Ansari, M. H.; Kusumoto, T.; Hiyama, T. Tetrahedron
(11) (a) Haack, K.-J.; Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noyori, R.
Angew. Chem., Int. Ed. Engl. 1997, 36, 285-288. (b) Hashiguchi, S.; Fujii,
A.; Haack, K.-J.; Matsumura, K.; Ikariya, T.; Noyori, R. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 288-290.
Lett. 1993, 34, 8271-8274. (c) Burgess, K.; Jennings, L. D. J. Am. Chem.
Soc. 1991, 113, 6129-6139. (d) Jeromin, G. E.; Scheidt, A. Tetrahedron
Lett. 1991, 32, 7021-7024. Also see ref 1a.
(
7) (a) Corey, E. J.; Helal, C. J. Tetrahedron Lett. 1995, 36, 9153-9156.
(12) Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R. J.
Am. Chem. Soc. 1995, 117, 7562-7563.
(
b) Helal, C. J.; Magriotis, P. A.; Corey, E. J. J. Am. Chem. Soc. 1996,
1
18, 10938-10939. (c) Parker, K. A.; Ledeboer, M. W. J. Org. Chem.
996, 61, 3214-3217.
(13) Takehara, J.; Hashiguchi, S.; Fujii, A.; Inoue, S.; Ikariya, T.; Noyori,
R. J. Chem. Soc., Chem. Commun. 1996, 233-234.
1
S0002-7863(97)01570-9 CCC: $14.00 © 1997 American Chemical Society