Paper
Catalysis Science & Technology
efficient adsorption and HDS reactions of refractory sulfur-
containing compounds with steric hindrance.
11 Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C.
Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z.
Xia, M. Dubey, P. M. Ajayan and J. Lou, Nat. Commun., 2014, 5,
5246–5254.
12 H. U. Rashid, K. Yu, M. N. Umar, M. N. Anjum, K. Khan, N.
Ahmad and M. T. Jan, Rev. Adv. Mater. Sci., 2015, 40,
235–248.
13 E. Hensen, P. Kooyman, Y. Van der Meer, A. Van der Kraan,
V. De Beer, J. Van Veen and R. Van Santen, J. Catal.,
2001, 199, 224–235.
14 M. S. Rana, J. Ramírez, A. Gutiérrez-Alejandre, J. Ancheyta, L.
Cedeño and S. Maity, J. Catal., 2007, 246, 100–108.
15 P. A. Nikul'shin, Y. V. Eremina, N. N. Tomina and A. A.
Pimerzin, Pet. Chem., 2006, 46, 343–348.
16 N. N. Tomina, P. A. Nikul'shin and A. A. Pimerzin, Pet.
Chem., 2008, 48, 92–99.
17 O. V. Klimov, A. V. Pashigreva, G. A. Bukhtiyarova, S. V.
Budukva, M. A. Fedotov, D. I. Kochubey, Y. A. Chesalov, V. I.
Zaikovskii and A. S. Noskov, Catal. Today, 2010, 150,
196–206.
4. Conclusions
Novel decyltrimethylammonium bromide-dispersed Ni–Mo
sulfide (DTMA-NiMo) was adopted for preparing a highly
efficient NiMoS/γ-Al2O3 HDS catalyst. The Ni and Mo species
were incorporated into the same sulfide with a high Ni/Mo
ratio, which is beneficial for improving the decoration of
MoS2 slabs by Ni to form a high number of NiMoS phases.
The as-synthesized NiMoS phases on the γ-Al2O3 support have
superior active-metal morphology, with a high dispersion of
0.36 and suitable stacking numbers (approximately 3.0),
offering a large number of accessible NiMoS phases. The as-
prepared NiMoS/γ-Al2O3 catalyst exhibits much higher activity
for the HDS of 4,6-DMDBT and FCC diesel than NiMoS/γ-
Al2O3 catalysts prepared by co-impregnation and TPAB-
assisted methods. This method provides a novel and facile
route for the production of sufficient and accessible NiMoS
phases in HDS catalysts for ultra-deep HDS of fuel.
18 J. Liang, M. Wu, P. Wei, J. Zhao, H. Huang, C. Li, Y. Lu, Y.
Liu and C. Liu, J. Catal., 2018, 358, 155–167.
Conflicts of interest
19 J. Liang, M. Wu, J. Wang, P. Wei, B. Sun, Y. Lu, D. Sun,
Y. Liu and C. Liu, Catal. Sci. Technol., 2018, 8,
6330–6345.
There are no conflicts to declare.
20 M. S. Nikulshina, P. Blanchard, A. Mozhaev, C. Lancelot, A.
Griboval-Constant, M. Fournier, E. Payen, O. Mentré, V.
Briois, P. A. Nikulshin and C. Lamonier, Catal. Sci. Technol.,
2018, 8, 5557–5572.
21 A. J. A. Konings, A. Valster, V. H. J. de Beer and R. Prins,
J. Catal., 1982, 76, 466–472.
Acknowledgements
The authors gratefully acknowledge the financial support of
the National Natural Science Foundation of China (Grant No.
21978323).
22 M. Feliz, R. Llusar, S. Uriel, C. Vicent, M. Brorson and K.
Herbst, Polyhedron, 2005, 24, 1212–1220.
References
1 A. Tanimu and K. Alhooshani, Energy Fuels, 2019, 33,
2810–2838.
23 A. Griboval, P. Blanchard, E. Payen, M. Fournier and J. L.
Dubois, Catal. Today, 1998, 45, 277–283.
2 A. Stanislaus, A. Marafi and M. S. Rana, Catal. Today,
2010, 153, 1–68.
3 S. K. Bej, S. K. Maity and U. T. Turaga, Energy Fuels,
2004, 18, 1227–1237.
4 Q. Zhang, J. Zhang, H. Yang, Y. Dong, Y. Liu, L. Yang, D.
Wei, W. Wang, L. Bai and H. Chen, Catal. Sci. Technol.,
2019, 9, 2915–2922.
24 A. Griboval, P. Blanchard, L. Gengembre, E. Payen, M.
Fournier, J. L. Dubois and J. R. Bernard, J. Catal., 1999, 188,
102–110.
25 A. Griboval, P. Blanchard, E. Payen, M. Fournier, J. L. Dubois
and J. R. Bernard, Appl. Catal., A, 2001, 217, 173–183.
26 C. I. Cabello, I. L. Botto and H. J. Thomas, Appl. Catal., A,
2000, 197, 79–86.
5 M. Zuo, X. Huang, J. Li, Q. Chang, Y. Duan, L. Yan, Z. Xiao,
S. Mei, S. Lu and Y. Yao, Catal. Sci. Technol., 2019, 9,
2923–2930.
6 M. Breysse, C. Geantet, P. Afanasiev, J. Blanchard and M.
Vrinat, Catal. Today, 2008, 130, 3–13.
7 A. J. van Dillen, R. J. A. M. Terörde, D. J. Lensveld, J. W.
Geus and K. P. de Jong, J. Catal., 2003, 216, 257–264.
8 J. A. Bergwerff, T. Visser, G. Leliveld, B. D. Rossenaar, K. P.
de Jong and B. M. Weckhuysen, J. Am. Chem. Soc., 2004, 126,
14548–14556.
27 C. I. Cabello, F. M. Cabrerizo, A. Alvarez and H. J. Thomas,
J. Mol. Catal. A: Chem., 2002, 186, 89–100.
28 M. Taniguchi, D. Imamura, H. Ishige, Y. Ishii, T. Murata, M.
Hidai and T. Tatsumi, J. Catal., 1999, 187, 139–150.
29 K. Herbst, M. Monari and M. Brorson, Inorg. Chem.,
2001, 40, 2979–2985.
30 T. K. T. Ninh, L. Massin, D. Laurenti and M. Vrinat, Appl.
Catal., A, 2011, 407, 29–39.
31 P. A. Nikulshin, D. I. Ishutenko, A. A. Mozhaev, K. I.
Maslakov and A. A. Pimerzin, J. Catal., 2014, 312, 152–169.
32 J. Xu, T. Huang and Y. Fan, Appl. Catal., B, 2017, 203,
839–850.
9 J. A. Bergwerff, T. Visser and B. M. Weckhuysen, Catal.
Today, 2008, 130, 117–125.
10 P. Serp, P. Kalck and R. Feurer, Chem. Rev., 2002, 102,
3085–3128.
33 S. Liu, X. Liang, J. Zhang and B. Chen, Catal. Sci. Technol.,
2017, 7, 466–480.
Catal. Sci. Technol.
This journal is © The Royal Society of Chemistry 2020