10.1002/ejoc.201700758
European Journal of Organic Chemistry
COMMUNICATION
crystallographic c* axis showing molecules of 3d and molecules of cyclohexane,
highlighted in red, with removed hydrogen atoms.
[8]
[9]
a) G. Zhang, O. Presly, F. White, I. M. Oppel, M. Mastalerz, Angew.
Chem. Int. Ed. 2014, 53, 1516–1520; Angew. Chem. 2014, 126, 1542–
1546; b) M. W. Schneider, I. M. Oppel, A. Griffin, M. Mastalerz, Angew.
Chem. Int. Ed. 2013, 52, 3611–3615; Angew. Chem. 2013, 125, 3699–
3703.
Those observations verify, that the increasing bulkiness of the
side-arms essentially affect the pronounced shape of the
interaction platforms. From 3f < 3c < 3d < 3b < 3h the solvent
molecules show the preference to orient themselves into the more
pronounced active surfaces with a higher degree of order. This
implies on the one hand that in general analytes as space filling
molecules fit well into the binding sites, which are defined
between the fluorene moieties and a side arm. On the other hand
further interactions like hydrogen bonding or ⋅⋅⋅interactions are
also essential for strong host-guest attractions and therefore a
selective and sensitive affinity behavior.
In conclusion, the newly synthesized 9,9’-spirobifluorene-type
architectures 3a–h represent promising affinity materials for
sensor applications. The functionalization of the 9,9’-
spirobifluorene core with various diketones created three-
dimensional and shape persistent structures with differently
pronounced binding sides and platforms for interaction. These
findings fully support the work of McKeown and co-workers. They
studied porous organic materials and identified the combination
of a rigid building blocks and bulky end groups as suitable. Our
QCM-based investigation demonstrates the efficiency of the bulky
end groups and their key role for potent supramolecular affinity
materials. These end groups define the active surface for
accommodating the guest molecules. Together with X-ray
structure analyses of the hosts a consistent picture for the
interaction and their application as affinity materials was obtained.
H. Ceijka, H. van Bekkum, A. Corma, F. Schüth, Introduction to Zeolite
Science and Practice, 3rd ed., Elsevier, Amsterdam, Netherlands, 2007;
c) S. Kitagawa, R. Kitaura, S.-I. Noro, Angew Chem. Int. Ed. 2004, 43,
2334–2375; Angew. Chem. 2004, 116, 2388–2430; d) G. Férey, Chem.
Soc. Rev. 2008, 37, 191–214.
[10] a) L. J. Abbott, N. B. McKeown, C. M. Colina, J. Mater. Chem. A 2013, 1,
11950–11960; b) L. J. Abbott, A. G. McDermott, A. Del Regno, R. G. D.
Taylor, C. G. Bezzu, K. J. Msayib, N. B. McKeown, F. R. Sliperstein, J.
Runt, C. M. Colina, J. Phys. Chem. B 2013, 117, 355–364; c) R. G. D.
Taylor, M. Carta, C. G. Bezzu, J. Walker, K. J. Msayib, B. M. Kariuki, N.
B. McKeown, Org. Lett. 2014, 16, 1848–1851; d) R. G. D. Taylor, C. G.
Bezzu, M. Carta, K. J. Msayib, J. Walker, R. Short, B. M. Kariuki, N. B.
McKeown, Chem. Eur. J. 2016, 22, 2466–2472.
[11] Q. Chen, M. Luo, P. Hammershøj, D. Zhou, Y. Han, B. W. Laursen, C.-
G. Yan, B.-H. Han, J. Am. Chem. Soc. 2012, 134, 6084–6087.
[12] a) A. W. Van Den Berg, C. O. Arean, Chem. Commun. 2008, 6, 668–
681; b) N. B. McKeown, P. M. Budd, D. Book, Macromol. Rapid Commun.
2007, 28, 995–1002; c) J. Y. Lee, L. Pan, S. P. Kelly, J. Jagiello, T. J.
Emge, J. Li, Adv. Mater. 2005, 17, 2703–2706; d) H. Furukawa, K. E.
Cordova, M. O’Keeffe, O. M. Yaghi, Science 2013, 341, 1230444-1–
1230444-12.
[13] a) D. Feng, Z.-Y. Gu, J.-R. Li, H.-L. Jiang, Z. Wei, H.-C. Zhou, Angew.
Chem. Int. Ed. 2012, 51, 10307–10310; Angew. Chem. 2012, 124,
10453–10456; b) M. Carta, M. Croad, K. Bugler, J. J. Msayib, N. B.
McKeown, Polym. Chem. 2014, 5, 5262–5266.
[14] D. G. Hamilton, M. Montalti, L. Prodi, M. Fontani, P. Zanello, J. K. M.
Sanders, Chem. Eur. J. 2000, 6, 608–617.
[15] I. Pyka, D. Ryvlin, S. R. Waldvogel, ChemPlusChem 2016, 81, 926–929.
[16] a) J.-H. Fournier, T. Maris, J. D. Wuest, J. Org. Chem. 2004, 69, 1762–
1775; b) T. P. I. Saragi, T. Spehr, A. Siebert, T. Fuhrmann-Lieker, J.
Salbeck, Chem. Rev. 2007, 107, 1011–1065; c) R. Pudzich, T.
Fuhrmann-Lieker, J. Salbeck in Advances in Polymer Science, Vol. 199
(Eds.: A. Abe, A.-C. Albertsson, R. Duncan, K. Dusek, W. H. de Jeu, J.-
F. Joanny, H.-H. Kausch, S. Kobayashi, K.-S. Lee, L. Leibler, T. E. Long,
I. Manners, M. Möller, O. Nuyken, E. M. Terentjev, B. Voit, G. Wegner,
U. Wiesner), Springer-Verlag, Berlin, Heidelberg, 2006, pp.83–142; d) I.
Pyka, D. Lubczyk, M. D. S. Saiju, J. Salbeck, S. R. Waldvogel,
ChemPlusChem 2017, in press., doi: 10.1002/cplu.201600583.
[17] B. Neubig, W. Brise, Das grosse Quarzkochbuch, Franzis, Feldkirchen,
1997.
Keywords: 9,9’-spirobifluorene • affinity materials • molecular
recognition • quartz crystal microbalances • supramolecular
chemistry
[1]
a) J. R. Holst, A. Trewin, A. I. Cooper, Nat. Chem. 2010, 2, 915–920; b)
A. C. Grimsdale, K. Müllen, Angew. Chem. Int. Ed. 2005, 44, 5592–5629;
Angew. Chem. 2005, 117, 5732–5772; c) C. Stobe, R. Seto, A.
Schneider, A. Lützen, Eur. J. Org. Chem. 2014, 29, 6513–6518; d) J.
Cuntze, F. Diederich, Helv. Chim. Acta, 1997, 80, 897–911; e) G. Tang,
S. S. Y. Chen, P. E. Shawn, K. Hegedus, X. Wang, P. L. Burn, P.
Meredith, Polym. Chem. 2011, 2, 2360–2368; f) F. Thiemann, T. Piehler,
D. Hasse, W. Saak, A. Lützen, Eur. J. Org. Chem. 2005, 10, 1991–2001.
a) J. H. Chong, S. J. Ardakani, K. J. Smith, M. J. MacLachlan, Chem. Eur.
J. 2009, 15, 11824–11828; b) B. Kohl, F. Rominger, M. Mastalerz, Chem.
Eur. J. 2015, 21, 17308–17313; c) D. Reinhard, F. Rominger, M.
Mastalerz, J. Org. Chem. 2015, 80, 9342–9348.
[18] J. B. Fenn, Angew. Chem. Int Ed. 2003, 42, 3871–3894; Angew. Chem.
2003, 115, 3999–4024.
[19] M. Brutschy, M. W. Schneider, M. Mastalerz, S. R. Waldvogel, Adv.
Mater. 2012, 24, 6049–6052.
[2]
[20] a) A. Linke, M. Schmidt, S. R. Waldvogel, ChemPlusChem 2015, 80,
1096–1099; b) A. Linke, S. H. Jungbauer, S. M. Huber, S. R. Waldvogel,
Chem. Commun. 2015, 51, 2040–2043; c) M. Brutschy, M. W. Schneider,
M. Mastalerz, S. R. Waldvogel, Chem. Commun. 2013, 49, 8398–8400;
d) C. Lohoelter, M. Brutschy, D. Lubczyk, S. R. Waldvogel, Beilstein J.
Org. Chem. 2013, 9, 2821–2833.
[3]
[4]
T. Hackfort, D. Kuck, Eur. J. Org. Chem. 1999, 11, 2867–2878.
D. Beaudoin, F. Rominger, M. Mastalerz, Angew. Chem. Int. Ed. 2017,
56, 1244–1248; Angew. Chem. 2017, 129, 1264–1268.
[5]
a) M. Brutschy, R. Stangenberg, C. Beer, D. Lubczyk, M. Baumgarten,
K. Müllen, S. R. Waldvogel, ChemPlusChem 2015, 80, 54–56; b) D.
Lubczyk, M. Grill, M. Baumgarten, S. R. Waldvogel, K. Müllen,
ChemPlusChem 2012, 77, 102–105.
[21] a) D. Lubczyk, C. Siering, J. Lörgen, Z. B. Shifrina, K. Müllen, S. R.
Waldvogel, Sens. Actuators B 2010, 143, 561–566; b) D. Lubczyk, M.
Grill, M. Baumgarten, S. R. Waldvogel, K. Müllen, ChemPlusChem 2012,
77, 102–105.
[6]
[7]
O. Dumele, B. Schreib, U. Warzok, N. Trapp, C. A. Schalley, F. Diederich,
Angew. Chem. Int. Ed. 2017, 56, 1152–1157; Angew. Chem. 2017, 129,
1172–1177.
a) D. J. Cram, S. Karbach, Y. H. Kim, L. Baczynskyj, G. W. Kallemeyn,
J. Am. Chem. Soc. 1985, 107, 2575–2576; b) R. Warmuth, J. Yoon, Acc.
Chem. Res. 2001, 34, 95–105.
This article is protected by copyright. All rights reserved.