UPDATES
e) M. Bandini, G. Cera, M. Chiarucci, Synthesis 2012,
44, 504; f) M. Bandini, Angew. Chem. 2011, 123, 1026;
Angew. Chem. Int. Ed. 2011, 50, 994. For selected recent
examples about the use of allylic alcohols in enantiose-
lective processes, see: e) M. A. Schafroth, G. Zuccarello,
S. Krautwald, D. Sarlah, E. M. Carreira, Angew. Chem.
2014, 126, 14118–14121; Angew. Chem. Int. Ed. 2014, 53,
13898–13091; f) D. Banerjee, K. Junge, M. Beller,
Angew. Chem. 2014, 126, 13265–13269; Angew. Chem.
Int. Ed. 2014, 53, 13049–13053; g) J. Y. Hamilton, N.
Hauser, D. Sarlah, E. M. Carreira, Angew. Chem. 2014,
126, 10935–10938; Angew. Chem. Int. Ed. 2014, 53,
10759–10762; h) X. Huo, G. Yang, D. Liu, Y. Liu, I. D.
Gridnev, W. Zhang, Angew. Chem. 2014, 126, 6894–
6898; Angew. Chem. Int. Ed. 2014, 53, 6776–6780; i) S.
Krautwald, M. A. Schafroth, D. Sarlah, E. M. Carreira,
J. Am. Chem. Soc. 2014, 136, 3020–3023; i) Y. Hamilton,
D. Sarlah, E. M. Carreira, J. Am. Chem. Soc. 2014, 136,
3006–3009; j) M. Zhuang, H. Du, Org. Biomol. Chem.
2014, 12, 4590–4593; k) A. Gualandi, L. Mengozzi,
C. M. Wilson, P. G. Cozzi, Synthesis 2014, 46, 1321; l) S.
Krautwald, D. Sarlah, M. A. Schafroth, E. M. Carreira,
Science 2013, 340, 1065–1068 and references cited there-
in.
1
2
3
4
5
6
7
8
9
reaction mechanism seems to proceed through an SN1-
type reaction, which could explain the low diastereo-
selection observed in the majority of cases. In
addition, the results observed suggest an TfOH
catalyzed in situ isomerization of the alcohol towards
the most energetically stable olefin prior the reaction
to occur, thus governing the regioselectivity of the
process.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
Experimental Section
General procedure for the asymmetric allylic
alkylation of b-keto esters with allylic alcohols.
Onto an evacuated, oven-dried and septum-capped flask
containing But-BOX ligand (L1, 5.4 mg, 0.018 mmol,
12 mol%) and Cu(OTf)2 (5.4 mg, 0.015 mmol, 10 mol%)
under argon atmosphere, toluene (0.5 mL) was added. The
complex was stirred at 258C for 90 min. After this time, the
flask was placed in a cooling bath at the corresponding
temperature and stirred for 10 min. Then, b-keto ester
(0.21 mmol, 1.5 equiv.) was added and stirred for an addi-
tional 10 min. Next, a solution of the corresponding alcohol
(0.15 mmol) in toluene (1 mL) was finally added and the
reaction mixture stirred for 15 h. After this time, saturated
NH4Cl (3 mL) was added and the mixture extracted with
ethyl acetate (33 5 mL). The organic phases were dried
(MgSO4) and evaporated. The crudes were purified by flash
chromatography. NOTE: Slight to moderate racemization
was observed in some cases after flash chromatography was
carried out. In addition, the chiral adducts MUST be kept in
the freezer (À208C) to avoid racemization.
[3] For examples of transition metal catalyzed processes,
see: a) K. Miyata, M. Kitamura, Synthesis, 2012, 44,
2138–2146; b) K. Miyata, H. Kutsuna, S. Kawakami, M.
Kitamura, Angew. Chem. 2011, 123, 4745–4749; Angew.
Chem. Int. Ed. 2011, 50, 4649–4653; c) S. Reimann, T.
Mallat, A. Baiker, J. Catal. 2007, 252, 30–38.
[4] For an organocatalyzed process, see: P.-S. Wang, X.-L.
Zhou, L.-Z. Gong, Org. Lett. 2014, 16, 976–979.
[5] For a recent example of the combined used of metal
and organocatalysis, see: H. Zhou, L. Zhang, C. Xu, S.
Luo, Angew. Chem. 2015, 127, 12836–12839; Angew.
Chem. Int. Ed. 2015, 54, 12645–12648.
[6] For a previous study from our group using an organo-
catalytic approach, see: P. Trillo, A. Baeza, C. Nꢁjera,
Synthesis 2014, 46, 3399–3407.
Acknowledgements
University of Alicante (VIGROB-173, GRE12-03), and
´
Spanish Ministerio de Economıa
y
Competitividad
(CTQ2015-66624-P) are gratefully acknowledged for financial
support (Project).
[7] P. Trillo, A. Baeza, C. Nꢁjera, Adv. Synth. Catal. 2013,
355, 2815–2821.
[8] For recent reviews about racemic SN1-type reaction with
alcohols, see: a) A. Baeza, C. Nꢁjera, Synthesis, 2014,
46, 25–34; b) E. Emer, R. Sinisi, M. Guiteras-Capdevila,
D. Petruzzielo, F. De Vicentiis, P. G. Cozzi, Eur. J. Org.
Chem. 2011, 647–666.
[9] For contributions from our group about allylic substitu-
tion using alcohols through SN1-type reactions, see:
a) A. Grau, A. Baeza, E. Serrano, J. Garcꢂa-Martꢂnez,
C. Nꢁjera, ChemCatChem 2015, 7, 87–93; b) P. Trillo, A.
Baeza, C. Nꢁjera, ChemCatChem. 2013, 5, 1538–1542;
c) P. Trillo, A. Baeza, C. Nꢁjera, J. Org. Chem. 2012, 77,
7344–7354; d) P. Trillo, A. Baeza, C. Nꢁjera, Eur. J. Org.
Chem. 2012, 2929–2934; e) X. Giner, P. Trillo, C. Nꢁjera,
J. Organomet. Chem, 2010, 696, 357–361.
[10] The copper-catalyzed asymmetric allylic alkylation of b-
keto esters employing allylic alcohols has been previ-
ously reported but using 2 equiv. of BF3·Et2O and CsI in
order to convert the hydroxyl group in the correspond-
ing iodide: Q.-H. Deng, H. Wadepohl, L. H. Gade, J.
Am. Chem. Soc. 2012, 134, 2946–2949.
References
[1] For selected examples of recent reviews on this subject,
see: a) Transition Metal Catalyzed Enantioselective
Allylic Substitution in Organic Synthesis, Vol. 38 (Ed.:
U. Kazmaier), Chemistry; Springer: Heidelberg, 2012;
b) B. M. Trost, Org. Process. Res. Dev. 2012, 16, 185–
194; c) G. Helmchen, U. Kazmaier, S. Fçster in Catalytic
Asymmetric Synthesis, 3rd ed., (Ed.: I. Ojima), Wiley:
Hoboken, NJ, 2010, pp. 497–642 and references cited
therein.
[2] For recent reviews about the use of allylic alcohols in
enantioselective processes, see: a) M. Dryzhakov, E.
Richmond, J. Moran, Synthesis 2016, 48, 935–959; b) A.
Gualandi, L. Mengozzi, C. M. Wilson, P. G. Cozzi
Chem. Asian J. 2014, 9, 984; c) B. Sundararaju, M.
Achard, C. Bruneau, Chem. Soc. Rev. 2012, 41, 4467,
4483; d) M. Chiarucci, M. di Lillo, A. Romaniello, P. G.
Cozzi, G. Cera, M. Bandini, Chem. Sci. 2012, 3, 2859;
Adv. Synth. Catal. 2017, 359, 1–8
6
ꢀ 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÞÞ
These are not the final page numbers!